Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI)

Synthesis, structure and characterization of new dithiocarbazate based mixed ligand oxidovanadium(IV) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies

Atanu Banerjee,^a Monalisa Mohanty,^a Sudhir Lima,^a Rajib Samanta,^a Eugenio Garribba,^b Takahiro Sasamori,^c and Rupam Dinda^{*,a}

^a Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India

^b Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy

^c Graduate School of Natural Sciences, Nagoya City University Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan

Table S1. Selected bond lengths (Å) and bond angles (°) for experimental (exptl.) and calculated (calcd.) structures of $[V^{IV}OL^1(phen)]$ (1), $[V^{IV}OL^2(phen)]$ (2) and $[V^{IV}OL^1(bipy)]$ (3), using the functional B3P86 and the general basis set with 6-311g on V, O, C, H and N atoms and 6311+g(d) on S and Cl.^{a,b}

	[V ^{IV} OL ¹ (phen)] (1)		[V ^{IV} OL²(phen)] (2)		[V ^{IV} OL ¹ (bipy)] (3)	
Distance/Angle	Exptl.	Calcd.	Exptl.	Calcd.	Exptl.	Calcd.
V(1)-O(1)	1.591	1.604	1.603	1.604	1.597	1.605
V(1)–O(2)	1.949	1.946	1.954	1.937	1.951	1.947
V(1)-N(2)	2.047	2.058	2.061	2.062	2.057	2.059
V(1)-N(4)	2.145	2.140	2.135	2.142	2.137	2.145
V(1)-N(3)	2.316	2.347	2.342	2.352	2.314	2.305
V(1)-S(1)	2.431	2.422	2.409	2.431	2.419	2.422
O(1)-V(1)-O(2)	101.9	102.2	100.6	103.0	100.9	102.1
O(1)-V(1)-N(2)	104.4	106.0	104.1	105.3	103.1	105.3
O(2)-V(1)-N(2)	85.9	85.4	88.9	87.4	85.5	85.3
O(1)-V(1)-N(4)	91.8	90.8	94.6	90.8	93.7	90.3
O(2)-V(1)-N(4)	92.2	93.8	91.9	91.7	89.4	94.1
N(2)-V(1)-N(4)	163.8	162.9	160.9	163.7	163.1	164.2
O(1)-V(1)-N(3)	164.9	163.5	167.7	163.4	165.6	162.0
O(2)-V(1)-N(3)	80.2	79.3	79.1	79.0	80.7	79.3
N(2)-V(1)-N(3)	90.6	90.4	88.3	91.2	91.2	92.7
N(4)-V(1)-N(3)	73.2	72.7	73.1	72.6	72.0	71.8
O(1)-V(1)-S(1)	98.6	100.6	98.9	99.8	98.9	100.7
O(2)-V(1)-S(1)	158.0	156.2	159.7	156.5	157.9	156.0
N(2)-V(1)-S(1)	81.3	81.7	80.8	81.2	80.3	81.6
N(4)-V(1)-S(1)	95.1	92.7	92.3	93.6	99.3	93.1
N(3)-V(1)-S(1)	82.1	80.8	83.1	80.8	82.7	81.3
MAPD (distance) ^c	0.6		0.4		0.3	
MAPD (angle) ^c	1.1		1.7		2.1	

^a The numbers of the atoms are the same as in **Figure 2** of the main text. ^b Distances in Å and angles in degrees. ^c Mean absolute percent deviation.

-									
Complex	$g_{ m iso}$	g _×	$g_{ m y}$	gz	A _{iso}	A _x	Aγ	Az	
[V ^{IV} OL ¹ (phen)] (1)	1.978	1.985	1.983	1.966	-85.3	-51.9	-52.8	-151.3	
[V ^{IV} OL ² (phen)] (2)	1.978	1.984	1.982	1.967	-85.4	-52.0	-52.7	-151.4	
[V ^{IV} OL ¹ (bipy)] (3)	1.978	1.985	1.982	1.966	-85.6	-52.2	-53.3	-151.5	

 Table S2. Spin Hamiltonian parameters calculated by DFT methods from first principles for oxidovanadium(IV)

 complexes 1–3.^a

^a A values reported 10⁻⁴ cm⁻¹ units.

Figure S1. Time dependent UV/vis spectra of $[V^{IV}OL^1(phen)]$ (1) (a), $[V^{IV}OL^2(phen)]$ (2) (b) and $[V^{IV}OL^1(bipy)]$ (3) (c) in Tris-HCl buffer.

Figure S2. IR spectrum of ligand H_2L^1 (a) and H_2L^2 (b) and and their corresponding complexes [V^{IV}OL¹(phen)] (1) (c), [V^{IV}OL²(phen)] (2) (d) and [V^{IV}OL¹(bipy)] (3) (e) in KBr.

Figure S3. UV/vis spectra of ligand H_2L^1 (a) and complex [V^{IV}OL¹(phen)] (1) (b) (1.8 × 10⁻⁴ M) recorded in DMSO.

Figure S4. ¹H NMR (a) and ¹³C NMR (b) spectrum of ligand H_2L^1 in DMSO- d_6

Figure S5. ESI–MS spectrum of [V^{IV}OL¹(phen)] (1) recorded in in CH₃CN (100 pmol/ μ L) at positive ion mode.

Figure S6. ESI–MS spectrum of [V^{IV}OL²(phen)] (2) recorded in in CH₃CN (100 pmol/ μ L) at positive ion mode.

Figure S7. ESI–MS spectrum of $[V^{IV}OL^{1}(bipy)]$ (3) recorded in in CH₃CN (100 pmol/µL) at positive ion mode.

Figure S8. Cyclic voltammogram of H_2L^1 (10⁻⁴ M) obtained in DMSO at a scan rate of 200 mV s⁻¹.

Figure S9. Cyclic voltammogram of $[V^{IV}OL^2(phen)]$ (2) (10⁻⁴ M) in DMSO at different scan rates.

Figure S10. X-band anisotropic EPR spectra of the complex [V^{IV}OL²(phen)] (**2**): (a) experimental spectrum in DCM and (b) generated spectrum with WinEPR software. The spectrum was generated with the spin Hamiltonian parameters reported in **Table 4** of the text.

Figure S11. X-band anisotropic EPR spectra of the complex [V^{IV}OL¹(bipy)] (**3**): (a) experimental spectrum in DCM and (b) generated spectrum with WinEPR software. The spectrum was generated with the spin Hamiltonian parameters reported in **Table 4** of the text.

Figure S12. Superimposition of the X-ray (in blue) and DFT optimized (in orange) structures of the complexes: (a) [V^{IV}OL¹(phen)] (1); (b) [V^{IV}OL²(phen)] (2) and (c) [V^{IV}OL¹(bipy)] (3).

Figure S13. Absorption spectra of oxidovanadium(IV) complexes (25 μ M each) in 50 mM Tris-HCl buffer at pH 8 upon the titration with CT-DNA (0–100 μ M): (a) [V^{IV}OL¹(phen)] (1) and (b) [V^{IV}OL²(phen)] (2). Arrows indicates the change in absorbance as function of the increase in the CT-DNA concentration. The inset shows the respective binding isotherm of complexes.

Figure S14. Fluorescence spectrum of [V^{IV}OL¹(phen)] (1) (a), [V^{IV}OL²(phen)] (2) (b) and [V^{IV}OL¹(bipy)] (3) (c) in 50 mM Tris–HCl buffer.

Figure S15. (a and c) EB (10 μ M) displacement assay measuring the change in fluorescence intensity upon the titration of complex [V^{IV}OL¹(phen)] (**1**) and [V^{IV}OL²(phen)] (**2**), respectively. Arrows indicates the change in fluorescence intensity as a function of the increase in the complex concentration (0–100 μ M) and the insets represent the corresponding Stern-Volmer plot. (b and d) Scatchard plot of **1** and **2**, respectively.

Figure S16. (a and c) Fluorescence quenching of HSA (10 μ M) by complex [V^{IV}OL¹(phen)] (**1**) and [V^{IV}OL²(phen)] (**2**), respectively. Arrows indicates the change in fluorescence intensity as a function of the increase in the complex concentration (0–100 μ M) and the insets represent the corresponding Stern-Volmer plot. (b and d) represents the Scatchard plot of **1** and **2**, respectively.

Figure S17. Time dependent UV/vis spectra of [V^{IV}OL¹(phen)] (1) in PBS buffer.