Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Dinuclear complexes of Mn, Co, Zn and Cd assembled with 1,4cyclohexanedicarboxylato: Synthesis, crystal structures and acetonitrile fluorescent sensing properties

Luis D. Rosales-Vázquez,^a Diego Martínez-Otero,^b Víctor Sánchez-Mendieta,^{*b} Jonathan Jaramillo-García,^b Antonio Téllez-López,^b Roberto Escudero,^c Francisco Morales,^c Josue Valdes-García,^a Alejandro Dorazco-González,^{*a}

Supplementary information

New Journal of Chemistry

	1	2	3	4
Empirical formula	$C_{36}H_{40}Mn_2N_4O_{10}$	$C_{36}H_{44}Co_2N_4O_{12}$	$C_{36}H_{44}N_4O_{12}Zn_2$	$C_{36}H_{44}Cd_2N_4O_{12}$
Formula weight	798.60	842.61	855.49	949.55
Temperature (K)		100	(2)	
Wavelength (Å)		0.71	073	
Crystal system		Monoclinic		Triclinic
Space group		P21/c		P-1
a (Å)	9.76750(10)	10.2385(4)	10.2587(5)	9.3550(4)
b (Å)	16.1090(2)	16.0725(6)	16.0646(7)	9.9500(4)
c (Å)	10.91170(10)	11.3029(4)	11.2653(5)	10.8783(5)
α (°)	90	90	90	88.0818(7)
β (°)	101.9053(4)	95.7321(6)	95.3428(10)	70.4169(7)
γ (°)	90	90	90	72.3874(7)
Volume (Å ³)	1679.97(3)	1850.69(12)	1848.48(15)	906.68(7)
Ζ	2	2	2	1
D_{calc} (Mg/m ³)	1.579	1.512	1.537	1.739
Absorption coefficient (mm ⁻	0.819	0.965	1.367	1.243
¹)				
F(000)	828	876	888	480
Crystal size (mm ³)	0.446 x 0.221 x	0.415 x 0.339 x	0.256 x 0.234 x	0.445 x 0.142 x
	0.167	0.137	0.174	0.126
Theta range for data	2.131 to 27.446	1.999 to 27.506	1.994 to 27.445	1.993 to 27.511
collection (°)				
Index ranges	-12<=h<=12,	-13<=h<=13,	-13<=h<=13,	-12<=h<=12,
	-20<=k<=20,	-20<=k<=20,	-20<=k<=20,	-12<=k<=12,
	-14<=l<=14	-14<=l<=14	-14<=l<=13	-14<=l<=14
Reflections collected	18297	20364	22778	16817
Independent reflections	3837 [R(int) =	4253 [R(int) =	4222 [R(int) =	4159 [R(int) =
	0.0284]	0.0255]	0.0310]	0.0242]
Refinement method		Full-matrix least	-squares on F ²	
Data/restraints/parameters	3837 / 3 / 241	4253 / 6 / 256	4222 / 6 / 256	4159 / 120 / 290
Goodness-of-fit on F ²	1.054	1.063	1.053	1.074
Final R indices	R1 = 0.0262,	R1 = 0.0246,	R1 = 0.0247,	R1 = 0.0183,
[I>2sigma(I)]	wR2 = 0.0645	wR2 = 0.0608	wR2 = 0.0609	wR2 = 0.0445
Dindiage (all data)	R1 = 0.0291,	R1 = 0.0264,	R1 = 0.0278,	R1 = 0.0189,
K mulces (an data)	wR2 = 0.0664	wR2 = 0.0618	wR2 = 0.0622	wR2 = 0.0449
Largest diff. peak and hole	0.459 and -0.239	0.389 and -0.328	0.415 and -0.270	0.643 and -0.507
e.Å ⁻³				

Table S1. Crystal data and structure refinement parameters for 1-4

]	Bond lengths	(Å)		
Mn(1)-O(1)	2.0937(10)		Mn(1)-N(1)	2	.2612(12)
Mn(1)-O(5)	2.1774(10)		Mn(1)-O(4)#1	2	.2818(10)
Mn(1)-O(3)#1	2.2139(10)		Mn(1)-N(2)	2	.2969(12)
		Angles (°)		
O(1)-Mn(1)-O(5)	94.17(4)		O(3)#1-Mn(1)-O(4)#1	58	.48(4)
O(1)-Mn(1)-O(3)#1	111.74(4)		N(1)-Mn(1)-O(4)#1	101	.87(4)
O(5)-Mn(1)-O(3)#1	90.84(4)		O(1)-Mn(1)-N(2)	160	.53(4)
O(1)-Mn(1)-N(1)	90.53(4)	O(5)-Mn(1)-N(2) 84.38(4)		.38(4)	
O(5)-Mn(1)-N(1)	105.99(4)	O(3)#1-Mn(1)-N(2) 87.71(4)		.71(4)	
O(3)#1-Mn(1)-N(1)	151.24(4)		N(1)-Mn(1)-N(2)	71	.36(4)
O(1)-Mn(1)-O(4)#1	98.27(4)		O(4)#1-Mn(1)-N(2)	92	.58(4)
O(5)-Mn(1)-O(4)#1	149.29(4)				
 D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(5)-H(5A)O(2)#2	0.845(13)	1.851(14)	2.6914(15)	172.9(18)	
O(5)-H(5B)O(3)#3	0.850(13)	1.943(15)	2.6999(14)	147.8(15)	

Table S2. Selected bond distances (Å), angles ($^\circ$) and hydrogen bonding for 1

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+2,-y+1,-z+1 #3 x+1,y,z

		Bond lengths (Å)		
Co(1)-O(1)	2.0638(10)	C	lo(1)-N(2)	2.1	356(12)
Co(1)-N(1)	2.0808(12)	C	o(1)-O(4)#1	2.1	974(10)
Co(1)-O(5)	2.0977(11)				
Co(1)-O(3)#1	2.1306(10)				
		Angles (°)			
O(1)-Co(1)-N(1)	95.02(4)	C	(5)-Co(1)-N(2)	88.4	5(4)
O(1)-Co(1)-O(5)	91.36(4)	C	(3)#1-Co(1)-N(2)	92.3	1(4)
N(1)-Co(1)-O(5)	100.20(4)	C	(1)-Co(1)-O(4)#1	93.6	7(4)
O(1)-Co(1)-O(3)#1	95.65(4)	N	(1)-Co(1)-O(4)#1	103.2	8(4)
N(1)-Co(1)-O(3)#1	161.28(4)	C	(5)-Co(1)-O(4)#1	155.4	4(4)
O(5)-Co(1)-O(3)#1	94.89(4)	C	(3)#1-Co(1)-O(4)#1	60.7	0(4)
O(1)-Co(1)-N(2)	172.02(4)	N	(2)-Co(1)-O(4)#1	89.7	8(4)
N(1)-Co(1)-N(2)	77.17(5)				
 D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(5)-H(5A)O(6)	0.843(14)	1.847(14)	2.6824(16)	170.6(18)	
O(5)-H(5B)O(2)	0.836(13)	1.849(14)	2.6542(15)	161.1(18)	
O(6)-H(6A)O(3)#2	0.859(14)	1.847(15)	2.6953(15)	169.1(18)	
O(6)-H(6B)O(2)#3	0.838(14)	2.029(16)	2.8216(16)	157.5(17)	

Table S3. Selected bond distances (Å),	angles ($^\circ)$ and hydrogen bonding for 2
--	---

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x-1,y,z #3 -x,-y+1,-z+1

]	Bond length	s (Å)		
Zn(1)-O(1)	2.0549(11)		Zn(1)-O(5)	2.0	0945(11)
Zn(1)-O(3)#1	2.0888(11)		Zn(1)-N(2)	2.1	1765(13)
Zn(1)-N(1)	2.0894(13)		Zn(1)-O(4)#1	2.3	3105(12)
		Angles (°)		
O(1)-Zn(1)-O(3)#1	98.63(5)		N(1)-Zn(1)-N(2)	76.0	51(5)
O(1)-Zn(1)-N(1)	94.04(5)		O(5)-Zn(1)-N(2)	89.3	35(5)
O(3)#1-Zn(1)-N(1)	156.85(5)		O(1)-Zn(1)-O(4)#1	94.	17(4)
O(1)-Zn(1)-O(5)	91.65(5)		O(3)#1-Zn(1)-O(4)#1	59.5	55(4)
O(3)#1-Zn(1)-O(5)	96.37(4)		N(1)-Zn(1)-O(4)#1	100.4	42(5)
N(1)-Zn(1)-O(5)	102.57(5)		O(5)-Zn(1)-O(4)#1	155.8	81(4)
O(1)-Zn(1)-N(2)	170.58(5)		N(2)-Zn(1)-O(4)#1	88.7	71(4)
O(3)#1-Zn(1)-N(2)	90.56(5)				
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(5)-H(5A)O(6)	0.839(14)	1.847(15)	2.6820(17)	173(2)	
O(5)-H(5B)O(2)	0.830(14)	1.865(14)	2.6605(16)	160.2(19)	
O(6)-H(6A)O(2)#2	0.820(14)	2.052(16)	2.8226(17)	156.4(19)	
O(6)-H(6B)O(3)#3	0.862(14)	1.841(15)	2.6936(16)	169.8(19)	

Table S4. Selected bond distances (Å), angles (°) and hydrogen bonding for ${\bf 3}$

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x,-y+1,-z+1 #3 x-1,y,z

Bond lengths (Å)				
Cd(1)-O(5)	2.3085(11)		Cd(1)-O(4)#1	2.3973(11
Cd(1)-O(3)#1	2.3467(11)		Cd(1)-O(1)	2.409(10)
Cd(1)-N(1)	2.3537(13)		Cd(1)-O(2)	2.580(3)
Cd(1)-N(2)	2.3574(13)			
		Angles (°))	
O(5)-Cd(1)-O(3)#1	145.41(4)		O(3)#1-Cd(1)-O(1)	94.9(3)
O(5)-Cd(1)-N(1)	122.22(4)]	N(1)-Cd(1)-O(1)	83.1(2)
O(3)#1-Cd(1)-N(1)	92.30(4)]	N(2)-Cd(1)-O(1)	149.22(19)
O(5)-Cd(1)-N(2)	91.08(4)		O(4)#1-Cd(1)-O(1)	126.7(2)
O(3)#1-Cd(1)-N(2)	100.00(4)	O(5)-Cd(1)-O(2)		76.35(14)
N(1)-Cd(1)-N(2)	69.56(5)	O(3)#1-Cd(1)-O(2)		80.90(14)
O(5)-Cd(1)-O(4)#1	94.04(4)	N(1)-Cd(1)-O(2)		134.09(8)
O(3)#1-Cd(1)-O(4)#1	55.40(4)	N(2)-Cd(1)-O(2)		156.34(8)
N(1)-Cd(1)-O(4)#1	133.90(4)	O(4)#1-Cd(1)-O(2)		77.51(7)
N(2)-Cd(1)-O(4)#1	83.59(4)	O(1)-Cd(1)-O(2)		52.74(18)
O(5)-Cd(1)-O(1)	91.7(3)			
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(5)-H(5A)O(4)#2	0.842(5)	1.810(6)	2.6500(15)	175.7(17)
O(5)-H(5B)O(2)	0.842(6)	2.310(17)	3.029(4)	143(2)
O(5)-H(5C)O(6)#3	0.842(5)	1.965(11)	2.7623(18)	158(3)
O(6)-H(6A)O(1)	0.842(5)	1.848(13) 2.637(9) 155(2)		155(2)
O(6)-H(6A)O(1A)	0.842(5)	2.114(14) 2.880(9) 151.1(19)		151.1(19)
O(6)-H(6B)O(5)#3	0.842(5)	1.977(12)	2.7623(18)	155(3)
O(6)-H(6C)O(6)#3	0.842(5)	1.962(11)	2.783(3)	165(3)

_ _

Table S5. Selected bond distances (Å), angles ($^\circ)$ and hydrogen bonding for 4

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 x,y-1,z #3 -x+1,-y,-z+2

Figure S1. Molecular structure of **2** (ellipsoids shown at 50% probability).

Figure S2. Molecular structure of **3** (ellipsoids shown at 50% probability).

Figure S3. Supramolecular 1-D zig-zag chain of **2** formed by hydrogen-bonding interactions (ellipsoids shown at 50% probability).

Figure S4. Supramolecular 1-D zig-zag chain of **3** formed by hydrogen-bonding interactions (ellipsoids shown at 50% probability).

Figure S5. Distorted-monocapped trigonal prismatic geometry of Cd(II) in **4** (only coordinated atoms are shown for clarity; ellipsoids shown at 50% probability).

Figure S6. χT vs. *T* plot for **1**.

Figure S7. χT vs. *T* plot for **2**.

Figure S8. Changes of the initial luminescent intensity of **4** (50 μ M) during four cycles of CH₃CN detection-activation