Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New J. Chem. 2020 · ISSN

Electronic Supplementary Information (ESI)

Energetic N-azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: the most highly enthalpy analogues of CL-20

Oleg A. Luk'yanov, Vladimir V. Parakhin, Nina I. Shlykova, Artem O. Dmitrienko, Elizaveta K. Melnikova, Tatiana S. Kon'kova, Konstantin A. Monogarov and Dmitry B. Meerov

<u>Contents</u>

¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of compound 11	S3
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of compound 11	S4
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of compound 11	S5
¹⁵ N [INVGATED] NMR (30.4 MHz, [D ₆]acetone) spectrum of compound 11	S6
IR (KBr) spectrum of compound 11	S7
HRMS (ESI) of compound 11	S8
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of compound 13	S9
¹ H NMR (300.1 MHz, [D ₆]DMSO) spectrum of compound 13	S10
¹³ C NMR (75.5 MHz, [D ₆]DMSO) spectrum of compound 13	S11
¹⁴ N NMR (21.7 MHz, [D ₆]DMSO) spectrum of compound 13	S12
¹⁵ N [INVGATED] NMR (30.4 MHz, [D ₆]DMSO) spectrum of compound 13	S13
IR (KBr) spectrum of compound 13	S14
HRMS (ESI) of compound 13	S15
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of compound 16	S16
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of compound 16	S17
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of compound 16	S18
¹⁵ N [INVGATED] NMR (30.4 MHz, [D ₆]acetone) spectrum of compound 16	S19
IR (KBr) spectrum of compound 16	S20
HRMS (ESI) of compound 16	S21
X-ray crystal structure determination	S22
Powder X-ray diffraction of compound 11	S22
Single crystal X-ray diffraction of compound 13	S28
Combustion calorimetry measurements of compounds 11 and 13	S30
Energetic performance of compounds 11 and 13	S31

¹³C NMR (75.5 MHz, [D₆]acetone) spectrum of compound 11

S5

S6

HRMS (ESI) for compound 11

¹H NMR (300.1 MHz, [D₆]DMSO) spectrum of compound 13

¹³C NMR (75.5 MHz, [D₆]DMSO) spectrum of compound 13

¹⁴N NMR (21.7 MHz, [D₆]DMSO) spectrum of compound 13

HRMS (ESI) for compound 13

¹H NMR (300.1 MHz, [D₆]acetone) spectrum of compound 16

¹³C NMR (75.5 MHz, [D₆]acetone) spectrum of compound 16

HRMS (ESI) for compound 16

X-ray crystal structure determination

1) Powder X-ray diffraction of compound 11

The X-ray powder diffraction pattern of compound **9** was measured using CuK α 1 radiation in transmission mode on a Bruker D8 Advance Vario diffractometer equipped with LynxEye 1D detector and Ge¹¹¹ monochromator. The pattern was indexed using SVD-Index algorithm in monoclinic syngony; systematic absences, cell volume and molecule volume agreed with space group P2₁/c and Z = 8 (Z' = 2).

The initial solutions for the structure were obtained by search in the direct space using Parallel Tempering as implemented in FOX. The resulting structure was used as a starting geometry for the DFT calculations in crystal with fixed and optimized unit cell. Optimization results with fixed unit cell were used as the starting geometries and the sources of bond and angle restrains in the Rietveld refinements.

 $R_{wp}/R_{wp}' / R_p/R_p' / R_{Bragg} = 1.78/4.65 / 1.33/4.67 / 0.65\%$, the difference curve was featureless and the molecular geometry (except for the hydrogen atoms) preserved well after the unrestrained refinement.

Two independent molecules in the unit cell shows different conformations: one with axial CH_2N_3 group and another with equatorial CH_2N_3 group.

Figure 1. View of the first molecule in crystal of compound 11.

Figure 2. View of the second molecule in crystal of compound 11.

The RMSD of the non-hydrogen atomic positions in the Rietveld refined structure from ones obtained by a calculation with optimized unit cell was 0.08 Å — within the limits proposed by J. van de Streek and M. Neumann for correct powder structures.

Detailed crystallographic information is provided in Table 1. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 1942572. Copies of the data can be obtained free of charge via <u>https://www.ccdc.cam.ac.uk/structures/</u>.

Formula	C7H8N14O1
Formula weight [g·mol⁻¹]	448.27
Temperature [K]	298
Radiation	CuKα1 (<i>λ</i> = 1.54056)
Crystal system	monoclinic
Space group	P21/c
Unit cell dimensions	$a = 9.8675(3)$ Å, $\alpha = 90^{\circ}$ $b = 12.6153(3)$ Å, $\beta = 90.7138(6)^{\circ}$ $c = 24.8333(6)$ Å, $\gamma = 90^{\circ}$
<i>V</i> [Å ³]	3091.05(14)
Z/Z	8/2
$ ho_{ m calc} [m g \cdot m cm^{-3}]$	1.927
μ [mm ⁻¹]	1.578
<i>F</i> (000)	1824
θ range [°]	2.50 to 45.01
Reflections measured	8067
Restraints applied/parameters refined	166 / 227
Rwp / Rwp' [%]	1.78 / 4.65
<i>R</i> _p / <i>R</i> _p ' [%]	1.33 / 4.67
Rexp [%]	0.877
<i>R</i> ı [%]	0.647
CCDC number	1942572

 Table 1. Detail Crystallographic data of compounds 11 according to powder X-ray diffraction.

Figure 3. Final observed (black), calculated (red) and difference profiles for the Rietveld refinement of compound **11**.

Table 2. Selected bond lengths (Å), bond angles (°) and torsion angles (°) of compound**11**.

Pond longths	
Bond lengths	
Nitro groups	
N(1)–N(2) / N(1')–N(2')	1.361(19) / 1.35(2)
N(10)–N(11) / N(10')–N(11')	1.420(19) / 1.407(18)
N(5)–N(6) / N(5')–N(6')	1.446(17) / 1.433(17)
N(7) - N(8) / N(7) - N(8)	1.381(18) / 1.371(19)
N(3) = N(4) / N(3') = N(4')	1 411(19) / 1 414(19)
Azidomethvl aroup	
N(9) - C(7) / N(9') - C(7')	1.406(19) / 1.438(19)
N(12) - C(7) / N(12') - C(7')	1 451(19) / 1 432(19)
N(12) = N(13) / N(12') = N(13')	1.222(10) / 1.256(18)
N(12) = N(13) / N(12) = N(13) N(12) = N(14) / N(12') = N(14')	1.222(19) / 1.230(10) 1.104(17) / 1.150(19)
N(13) = N(14) / N(13) = N(14)	1.194(17)71.150(18)
Framework	
N(2) - C(1) / N(2') - C(1')	1 /58(16) / 1 /81(10)
N(2) = O(1) / N(2) = O(1)	1.450(10) / 1.461(19)
N(2) = C(0) / N(2) = C(0)	1.402(19) / 1.402(19)
N(10) - C(6) / N(10) - C(6)	1.463(16) / 1.463(17)
N(10)-C(5) / N(10')-C(5')	1.491(18) / 1.497(18)
C(1)–C(5) / C(1')–C(5')	1.610(19) / 1.573(19)
C(3) - C(6) / C(3') - C(6')	1 587(10) / 1 50/(10)
O(3) = O(0) / O(3) = O(0)	1.307(19) / 1.394(19)
N(9) - C(4) / N(9) - C(4)	1.442(19) / 1.441(10)
N(9) - C(5) / N(9) - C(5)	1.420(18) / 1.444(18)
N(3)-C(1) / N(3')-C(1')	1.446(18) / 1.433(18)
N(3)–C(2) / N(3')–C(2')	1.421(19) / 1.423(19)

Table 2 (continued)

Bond angles	
Nitro groups N(1)-N(2)-C(1) / N(1')-N(2')-C(1') N(1)-N(2)-C(6) / N(1')-N(2')-C(6') N(11)-N(10)-C(5) / N(11')-N(10')-C(5') N(11)-N(10)-C(6) / N(11')-N(10')-C(6') N(6)-N(5)-C(2) / N(6')-N(5')-C(2') N(6)-N(5)-C(3) / N(6')-N(5')-C(3') N(8)-N(7)-C(3) / N(8')-N(7')-C(3') N(8)-N(7)-C(4) / N(8')-N(7')-C(4')	125.1(13) / 121.3(11) 123.7(11) / 121.4(11) 118.3(10) / 119.1(11) 116.4(10) / 118.1(11) 115.6(11) / 119.0(11) 114.9(11) / 118.1(12) 119.1(11) / 118.7(12) 121.9(11) / 119.9(12)
N(4)–N(3)–C(1) / N(4')–N(3')–C(1') N(4)–N(3)–C(2) / N(4')–N(3')–C(2')	119.5(13) / 120.4(12) 119.8(11) / 119.5(12)
Azidomethyl group C(4)–N(9)–C(7) / C(4')–N(9')–C(7') C(5)–N(9)–C(7) / C(5')–N(9')–C(7') N(9)–C(7)–N(12) / N(9')–C(7')–N(12') N(13)–N(12)–C(7) / N(13')–N(12')–C(7') N(12)–N(13)–N(14) / N(12')–N(13')–N(14')	122.2(12) / 112.2(11) 122.3(11) / 111.8(11) 115.6(12) / 109.9(12) 114.9(13) / 113.2(12) 179(3) / 178.9(14)
Framework C(1)–N(2)–C(6) / C(1')–N(2')–C(6') N(2)–C(6)–N(10) / N(2')–C(6')–N(10') C(5)–N(10)–C(6) / C(5')–N(10')–C(6') N(10)–C(5)–C(1) / N(10')–C(5')–C(1') N(2)–C(1)–C(5) / N(2')–C(1')–C(5')	110.9(11) / 110.4(11) 100.5(10) / 99.9(11) 108.1(10) / 108.3(10) 103.6(9) / 104.2(10) 101.4(11) / 101.6(10)
N(2)–C(6)–C(3) / N(2')–C(6')–C(3') N(10)–C(6)–C(3) / N(10')–C(6')–C(3') N(5)–C(3)–C(6) / N(5')–C(3')–C(6') N(7)–C(3)–C(6) / N(7')–C(3')–C(6') N(2)–C(1)–N(3) / N(2')–C(1')–N(3')	111.2(10) / 111.3(11) 110.3(10) / 110.4(10) 110.0(11) / 108.1(11) 112.3(10) / 109.6(11) 111.2(11) / 111.2(11)
Torsion angles N(1)-N(2)-C(1)-C(5) / N(1')-N(2')-C(1')-C(5') N(6)-N(5)-C(2)-C(4) / N(6')-N(5')-C(2')-C(4') N(11)-N(10)-C(5)-C(1) / N(11')-N(10')-C(5')- C(1')	–161.7(12) / –176.6(12) 107.8(13) / –118.5(13) 111.9(12) / –115.7(13)
N(8)-N(7)-C(4)-C(2) / N(8')-N(7')-C(4')-C(2') C(7)-N(9)-C(4)-C(2) / C(7')-N(9')-C(4')-C(2') C(7)-N(9)-C(5)-C(1) / C(7')-N(9')-C(5')-C(1') N(4)-N(3)-C(1)-C(5) / N(4')-N(3')-C(1')-C(5') N(4)-N(3)-C(2)-C(4) / N(4')-N(3')-C(2')-C(4') N(13)-N(12)-C(7)-N(9) / N(13')-N(12')-C(7')- N(9')	174.2(12) / 116.3(13) 129.3(13) / –177.9(11) –126.9(13) / 176.5(11) 147.7(12) / –145.7(12) –145.1(12) / 144.4(12) –107.0(15) / –77.9(15)

N(2)-C(1)-C(5)-N(10) / N(2')-C(1')-C(5')-	-0.7(13) / 1.2(12)
N(10')	
C(1)-N(2)-C(6)-C(3) / C(1')-N(2')-C(6')-C(3')	77.6(12) / -77.3(13)
N(3)-C(1)-C(5)-N(9) / N(3')-C(1')-C(5')-N(9')	-2.8(14) / 2.4(15)
N(3)-C(2)-C(4)-N(9) / N(3')-C(2')-C(4')-N(9')	-2.5(15) / 0.4(15)
C(2)-N(5)-C(3)-C(6) / C(2')-N(5')-C(3')-C(6')	-79.7(13) / 82.0(12)
N(5)-C(2)-C(4)-N(7) / N(5')-C(2')-C(4')-N(7')	-3.3(13) / 2.6(13)
N(5)-C(3)-C(6)-N(2) / N(5')-C(3')-C(6')-N(2')	1.4(14) / –2.3(15)
C(3)-N(5)-C(2)-C(4) / C(3')-N(5')-C(2')-C(4')	-22.3(14) / 19.3(14)
C(3)-N(7)-C(4)-C(2) / C(3')-N(7')-C(4')-C(2')	28.2(13) / -23.8(13)
N(7)-C(3)-C(6)-N(2) / N(7')-C(3')-C(6')-N(2')	-109.2(12) / 110.3(12)
N(7)-C(3)-C(6)-N(10) / N(7')-C(3')-C(6')-	1.4(15) / 0.3(16)
N(10′)	
C(6)-N(2)-C(1)-N(3) / C(6')-N(2')-C(1')-N(3')	-90.2(14) / 91.3(13)
C(6)-N(2)-C(1)-C(5) / C(6')-N(2')-C(1')-C(5')	24.8(13) / -25.3(13)
C(5)-N(9)-C(7)-N(12) / C(5')-N(9')-C(7')-	-75.6(17) / -67.9(14)
N(12′)	
C(5)-N(10)-C(6)-C(3) / C(5')-N(10')-C(6')-	-80.1(12) / 80.0(13)
C(3')	
C(4)-N(7)-C(3)-C(6) / C(4')-N(7')-C(3')-C(6')	74.3(13) / -78.9(13)
C(4)-N(9)-C(7)-N(12) / C(4')-N(9')-C(7')-	101.9(15) / 162.6(11)
N(12')	

2) Single crystal X-ray diffraction of compound 13

X-ray diffraction study of compound **13** was carried out on a «Bruker APEX2 DUO CCD» diffractometer (MoK α radiation: $\lambda = 0.71073$ Å, graphite monochromator) at 293 K. The structures were solved by a direct method and refined by least squares in the anisotropic full-matrix approximation in F²_{hkl}. The positions of hydrogen atoms were calculated geometrically and refined in the isotropic approximation by the riding model. All calculations were performed using the SHELXTL PLUS program package. Detailed crystallographic information is provided in Table 2. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 1938394. Copies of the data can be obtained free of charge via <u>https://www.ccdc.cam.ac.uk/structures/</u>.

Table 3. Detail Crystallographic data of compounds 13 according to single crystal X-ray diffract	ction
analysis.	_

Formula	C ₈ H ₁₀ N ₁₆ O ₈
Formula weight [g⋅mol ⁻¹]	458.27
Temperature [K]	296
Radiation	ΜοΚα (λ = 0.71073)
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions	$a = 21.810(2)$ Å, $\alpha = 90^{\circ}$ $b = 6.0891(6)$ Å, $\beta = 125.743(2)^{\circ}$ $c = 15.2289(16)$ Å, $\gamma = 90^{\circ}$
<i>V</i> [Å ³]	1641.5(3)
Z/Z	4 / 1
ρ _{calc} [g·cm ^{−3}]	1.854
µ [mm ⁻¹]	0.164
<i>F</i> (000)	937
crystal colour	colourless
crystal size [mm ³]	0.35 × 0.30 × 0.35
θ range [°]	2.30° to 30.45°
Index ranges	$-30 \le h \le 25, 0 \le k \le 8, 0 \le l \le 21$
Reflections measured	10816
Independent reflections	2493 [<i>R</i> (int) = 0.0442]
Restraints applied/parameters refined	0 / 165
Goodness-of-fit on <i>F</i> ²	1.018
Reflections with $l > 2\sigma(l)$	1836
Final R indeces $[I \ge 2\sigma(I)]$	$R_1 = 0.0442$, $wR_2 = 0.1096$
Final <i>R</i> indeces [all data]	$R_1 = 0.0637, wR_2 = 0.1224$
Residual electron density (ρ_{max}/ρ_{min}) [e Å ⁻³ / e Å ⁻³]	0.341 / -0.264
CCDC number	1938394

Table II colocica bolla longilio (71) alla bolla aligico (751 collipcalla 16	Table 4. Selected bon	d lengths (Å)	and bond angles	(°) of	f compound 13
--	-----------------------	---------------	-----------------	--------	---------------

Bond lengths		
Nitro groups		
N(1) - N(7)	1.3878(16)	
N(8)–N(3)	1.3799(16)	
Azidomothylarouno		
	1 4507(10)	
N(2) = O(7) N(4) = O(7)	1.4507(19)	
N(4) = O(7) N(5) = N(4)	1.404(2)	
N(5) - N(6)	1 122/2)	
14(3)=14(0)	1.122(2)	
N(1)–C(1)`	1.4492(18)	
N(3)–C(1)	1.4551(18)	
N(3)-C(5)	1.4907(18)	
C(3)–C(5)	1.575(2)	
N(1)–C(3)	1.4835(18)	
C(1) - C(1)	1.588(3)	
N(2)–C(5)	1.4406(18)	
Bond angles		
Nitro groups		
C(1) = N(1) = N(7)	119 55(12)	
C(3) - N(1) - N(7)	120.06(11)	
C(1) - N(3) - N(8)	118.70(11)	
C(5)–N(3)–N(8)	119.24(11)	
Azidomothul arouno		
Azidometnyi groups $C(Z) = N(Q) - C(E)$	115 00(12)	
O(7) = O(2) = O(3) O(4) = O(7) = O(3)	111.61(13)	
C(7) = N(4) = N(5)	114 63(15)	
N(6) - N(5) - N(4)	173.8(2)	
Framework		
C(3)-N(1)-C(1)	108.68(11)	
N(3)-C(1)-N(1)	103.01(11)	
C(5)-N(3)-C(1)	108.23(10)	
C(3) - C(5) - N(3)	103.46(11)	
C(5)–C(3)–N(1)	103.67(11)	
C(1) - C(1) - N(1)	109.09(12)	
C(1) - C(1) - N(3)	108.82(12)	
C(5)–N(3)–N(8)	119.24(11)	
N(3)–C(5)–N(2)	112.64 (11)	
C(3) - C(5) - N(2)	110.63(11)	

Combustion calorimetry measurements of compounds 11 and 13

Measurements were carried out on a precision automatic combustion calorimeter with an isothermal coating specifically developed for combustion of energetic compounds.

The mean square error of the measurements was 0.025%.

#	$M \Delta T Q q_a q_i q_N q_{cot} -\Delta U'_B$										
1	0.057135	2.00210	1076.31 914.05 9.69 2.24 9.21 2469.9								
2	0.072369	2.07316	1114.51	918.16	5.92	2.83	9.06	2467.1			
3	0.078421	2.09636 1126.98 915.60 5.88 3.04 8.47 2473.7									
4	0.073995	2.07470	1115.34	915.28	5.89	2.90	8.62	2468.4			
	$-\Delta U'_{\rm B} = 2469.8 \pm 3.7 {\rm cal} \cdot {\rm g}^{-1}$										
	<i>–</i> Δ <i>H</i> _c = 1099.3 ± 1.7 cal⋅mol ^{−1}										
	Δ <i>H</i> _f = 167.7 ± 1.7 kcal⋅mol ⁻¹										

 Table 5. Measurements of combustion energy of compound 11.

Table	6. N	Neasurements	s of	combustion	energy	of	compoun	d 13.

#	М	ΔT	Q q_a q_i q_N q_{cot} $-\Delta U$							
1	0.070302	2.11158	1135.16 912.63 5.95 2.07 8.50 29							
2	0.072564	2.13276	1146.55 916.88 5.92 2.21 8.66 293							
3	0.072928	2.13484	1147.67 917.15 5.86 2.24 8.63 293							
4	0.074012	2.13084	1145.52	911.92	5.87	2.24	8.72	2028.8		
	$-U'_{\rm B}$ =2931.0 ± 3.0 cal·g ⁻¹									
	<i>–</i> Δ <i>H</i> _c = 1335.0 ± 1.0 cal⋅mol ⁻¹									
	Δ <i>H</i> _f = 241.0 ± 1.0 kcal·mol ⁻¹									

The energy equivalent $W = Q_{\text{meas}} \cdot \Delta T^{-1}$ was found to be 537.59±0.14 cal·deg⁻¹ The combustion energy of the cotton thread measured in a series of seven experiments was 3968.9±1.6 cal·g⁻¹.

The standard enthalpies of formation of combustion products are assumed to be as follows:

 $\Delta H_f [CO_2]_{(g)} = -94.051 \pm 0.031 \text{ kcal·mol}^{-1},$

 $\Delta H_f [H_2O]_{(l)} = -68.315 \pm 0.009 \text{ kcal·mol}^{-1}.$

Energetic performance of compounds 11 and 13

Table 7 Physicochemical and energetic properties of **11** and **13** in comparison with HMX and CL-20.

Compound	Formula	۵a	H% [♭]	T _{dec} ^c [°C]	d ^d [g·cm⁻³]	Δ <i>H</i> f ^e [kJ·kg ^{−1} (kJ·mol ^{−1})]	Q _{comb} ^e [kJ·kg ^{−1}]	<i>D</i> √ ^f [km·s ^{−1}] ^[e]	P _{C-J} ^f [GPa] ^[e]
11	$C_7 H_8 N_{14} O_{10}$	0.56	1.79	206	1.927	+1568 (+702)	10281	9.12	40.5
13	$C_8H_{10}N_{16}O_8$	0.38	2.18	179	1.854	+2205 (+1010)	12213	9.17	39.2
β -HMX ^g	$C_4H_8N_8O_8$	0.67	2.70	280	1.905	+255 (+76)	9448	9.23	40.7
ε-CL-20 ^g	$C_6H_6N_{12}O_{12}$	0.80	1.37	229	2.044	+857 (+375)	8215	9.49	47.0

^{*a*} Oxygen coefficient. For a compound with the molecular formula CxHyNwOz, $\alpha = z/(2x+y/2)$. ^{*b*} Hydrogen content. ^{*c*} Decomposition onset temperature at a heating rate of 5 °C·min⁻¹ (DSC). ^{*d*} Density measured by X-ray diffraction at 25 °C. ^{*e*} Enthalpy of formation and heat of combustion in oxygen determined by the method of combustion calorimetry. ^{*f*} Detonation parameters: velocity and pressure calculated with S&DV4.5 code. ^{*g*} R. Meyer, J. Kohler and A. Homburg, *Explosives*, 7th edition, Wiley-VCH, Weinheim, 2016.