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I. Structures of studied aryl-guanidines          
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Chart S1. Structures of studied aryl-guanidines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



II. Synthesis and Analytical Data of compounds 

 

 

N-(naphthalene-1-yl)guanidine (NGU), N-(anthracene-2-yl)guanidine (AGU), N-(pyrene-1-

yl)guanidine (PyGU) were synthesized as described before.1 

 

1.1.   5,10,15,20-tetraphenylporphyrin (3) 

NH

N

N

HN

3
 

Porphyrin 3 was prepared by literature procedure.2 To a hot propionic acid (600 mL), benzaldehyde (16.0 

mL, 0.16 mol), and pyrrole (11.2 mL, 0.16 mol) were added consecutively. Reaction mixture was refluxed 

for 30 min. After colling, the precipitate was filtered off and washed with methanol to give purple crystals. 

After drying in the air, product 3 was obtained (4.9 g, 20 %). 1H NMR spectrum is identical to literature. 

1H NMR (300 MHz, CDCl3) δ/ppm: 8.85 (s, 8H; H-2, H-3, H-7, H-8, H-12, H-13, H-17, H-18), 8.28 - 8.16 

(m, 8H; H-2'), 7.82 - 7.68 (m, 12H; H-3', H-4'), -2.75 (brs, 2H; NH). 

 

1.2.   5-(p-aminophenyl)-10,15,20-triphenylporphyrin (5) 
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HN
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Porphyrin 5 was synthesized from 5,10,15,20-tetraphenylporphyrin 3 in 19-62% yield (depending on the 

reaction scale), by modification of the literature procedure.3 

To a solution of 5,10,15,20-tetraphenylporphyrin 3 in TFA, sodium nitrite (0.8 eq) was added. After 5 

minutes of stirring at 0 °C, the reaction mixture was poured into distilled water and extracted with 

dichloromethane. The organic layer was washed with saturated aqueous NaHCO3 and water. After 

evaporation of the solvent, the residue was dissolved in concentrated hydrochloric acid and, while stirring, 

tin(II) chloride (10 eq) was carefully added. The final mixture was heated to 65 °C for 2 hours, before being 

poured into cold water. The aqueous solution was neutralized with sodium hydroxide until pH = 8. The 



aqueous solution was extracted with dichloromethane. The organic layer was then concentrated under 

vacuum and the residue was purified on the column of silicagel employing a 1:1 mixture of petroleum 

ether/dichloromethane as the eluent, to give amine 5 as purple solid. 

 

1H NMR (300 MHz, CDCl3) δ/ppm: 8.94 (d, J = 4.8 Hz, 2H; H-3, H-7), 8.83 (s, 6H; H-2, H-8, H-12, H-13, 

H-17, H-18), 8.29-8.16 (m, 6H; H-6'), 8.00 (d, J = 8.3 Hz, 2H; H-2'), 7.83-7.67 (m, 9H; H-7', H-8'), 7.07 (d, 

J = 8.4 Hz, 2H; H-3'), 4.03 (brs, 2H; NH2), -2.75 (brs, 2H; NH). 

 

1.3. N,N’-di-Boc-N’’-trifluoromethanesulfonyl-guanidine was synthesized in two steps from guanidine 

hydrochloride in 33% yield, following the literature procedure.4  

1H NMR (600 MHz, d6-DMSO) δ/ppm: 11.03 (brs, 2H), 1.46 (s, 18H). 

 

1.3. 5-(p-guanidinophenyl)-10,15,20-triphenylporphyrin (PoGU) (6) 
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To a solution of N,N’-di-Boc-N’’-trifluoromethanesulfonyl-guanidine (198.9 mg, 0.5082 mmol) and 

trimethylamine (75.0 L, 0.5336 mmol) in dichloromethane (3 mL), 5-(p-aminophenyl)-10,15,20-

triphenylporphyrin 5 (160.0 mg, 0.2541 mmol) was added and the reaction mixture was stirred at r.t. for 

15 days, until the complete consumption of amine (followed by TLC). After the evaporation of solvent, 

reaction mixture was subjected to chromatography on the column of silicagel employing a 1:1 mixture 

of petroleum ether/dichloromethane as the eluent. The obtained solid (246.0 mg), containing 5-[(N1,N2-

bis(tert-butyloxycarbonyl)-p-guanidinophenyl]-10,15,20-triphenylporphyrin 6 as desired product, 

contaminated with the excess of N,N’-di-Boc-N’’-trifluoromethanesulfonyl-guanidine, was hydrolysed 

in the next step without further purification. 50.0 mg (0.0573 mmol) of the above mentioned solid, 

composed mainly of N,N′-di-Boc-protected guanidine, was suspended in methanol and excess of 

hydrochloric acid was added. The reaction mixture was stirred at r.t. for several hours, until the full 

consumption of substrate (monitored by TLC). Reaction mixture was basified with saturated aqueous 

solution of potassium hydroxide and stirred at r.t. for several hours. Methanol was removed under 

reduced pressure and residue was extracted with ethyl acetate. Organic extracts were collected, dried 



over MgSO4 and solvent was removed under reduced pressure to afford neutral PoGU as a purple solid 

(30.1 mg, 78% yield). 

 

FTIR-ATR ṽ/cm-1: 3463, 3318, 3023, 1657, 1590, 1471, 1440, 1349, 1174, 1071, 1001, 965, 800, 734, 701. 

1H NMR (300 MHz, d6-DMSO) δ/ppm: 9.04 (d, J = 4.8 Hz, 2H; H-3, H-7), 8.87-8.76 (m, 6H; H-2, H-8, H-

12, H-13, H-17, H-18), 8.27-8.18 (m, 6H; H-6'), 8.00 (d, J = 8.2 Hz, 2H; H-2'), 7.89-7.78 (m, 9H; H-7', H-

8'), 7.19 (d, J = 6.6 Hz, 2H; H-3'), 5.39 (brs, 4H; 2 NH2), -2.87 (s, 2H; 2 NHpyrrole). 

13C NMR (75 MHz, CDCl3) δ/ppm: 151,1 (C=N); 148,7; 142,2; 136,1; 135,8; 134,5; 127,6; 126,6; 121,3; 

120,4; 119,9; 119,8. 

HRMS-MALDI found: 672.2891; calc. for C45H33N7 [M+H]+: 672.2876. 

 

 
 

Figure S1. 1H NMR (300 MHz, CDCl3) spectrum of PoGU 

 

 



 
 
Figure S2. 13C NMR (75 MHz, CDCl3) spectrum of PoGU 

 

 

III. Physico-chemical properties of buffered solution (sodium cacodylate pH=7) 

Solubility 

NGU, AGU, PyGU and PoGU are soluble in dimethyl sulfoxide (c = 2×10-3 mol dm-3). Stock solutions 

were diluted with buffer sodium cacodylate (pH = 7.0, I = 0.05 mol dm-3). 

UV/Vis spectra, stability 

Buffered solutions of studied compounds were stable for more (1 or 4) days. The absorbancies of buffered 

solutions of studied compounds are proportional to their concentrations up to c = 6×10-6 mol dm-3.  

No significant changes of the UV/Vis spectra on the temperature increase up to 90 oC were observed, and 

reproducibility of UV/Vis spectra upon cooling back to 20 oC was excellent.  

All mentioned is indicating that the studied compounds do not aggregate by intermolecular stacking at 

experimental conditions used. Exception is PoGU, which indicate some aggregation upon heating to 90 oC 

and cooling back to 20 oC (see Figure S3.). 
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Figure S3. UV/Vis spectra changes of PoGU (c = 610-6 mol dm-3) in buffered solution (pH = 7.0, I = 0.05 

mol dm-3) at different temperatures. 

 

Absorption maxima and corresponding molar extinction coefficients () are given in Table 1. 
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Figure S4. UV/Vis spectra dependence of NGU, AGU, PyGU and PoGU on compound concentrations 

(range 2×10-6 6×10-6 mol dm-3) in buffered solution (Na cacodylate, pH = 7.0, I = 0.05 mol dm-3). 

 



Table S1. Electronic absorption data of NGU, AGU, PyGU and PoGU. 

 lmax/nm 103/mmol-1 cm2 

 

N-(naphthalene-1-yl)guanidine 

281 

 

8.9 ± 0.5 

 

 
N-(anthracene-2-yl)guanidine 

255 123.4 ± 0.4 

 
N-(pyrene-1-yl)guanidine 

340 19.7 ± 0.6 

 
5-(p-guanidinophenyl)-10,15,20-triphenylporphyrin 

 

424 84.9 ± 1.0 

Stock solutions of NGU, AGU, PyGU and PoGU compounds were prepared in dimethyl sulfoxide (c = 

2×10-3 mol dm-3). 
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Figure S5. The UV/Vis spectra of studied compounds normalised on λmax for each compound, c = 6×10-6 

mol dm-3 in buffered solution (Na cacodylate, pH = 7.0, I = 0.05 mol dm-3). 



pK determination 

N-(pyrene-1-yl)guanidine 

as a model compound for all, due to convenient chromophore 

Stock solution of PyGU was prepared in dimethyl sulfoxide (c = 2×10-3 mol dm-3). 
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Figure S6. a) UV/Vis titration of water solution of PyGU (c = 510-6 mol dm-3), acidified with HCl (0.1 

mol dm-3), with NaOH (0.2 mol dm-3); b) dependence of absorbance at λmax = 340 nm on pH.  

 

 



IV. Study of interactions of NGU, AGU, PyGU and PoGU with DNA and RNA in buffered solution 

(sodium cacodylate pH = 7) 

Thermal melting experiments 

It is well known that upon heating ds-helices of polynucleotides at well-defined temperature (Tm value) 

dissociate into two single stranded polynucleotides. Non-covalent binding of small molecules to ds-

polynucleotides usually has certain effect on the thermal stability of helices thus giving different Tm values. 

Difference between Tm value of free polynucleotide and complex with small molecule (Tm value) is 

important factor in characterisation of small molecule / ds-polynucleotide interactions. 
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Figure S7. a) Melting curves of ct-DNA upon addition of NGU, AGU, PyGU and PoGU (r = 0.2 

[compound] / [polynucleotide]) at pH = 7.0 (buffer sodium cacodylate, I = 0.05 mol dm-3) b) Melting 

curves of polyA-polyU upon addition of NGU, AGU, PyGU and PoGU (r = 0.2 [compound] / 

[polynucleotide]) at pH = 7.0 (buffer sodium cacodylate, I = 0.05 mol dm-3). 

 



Fluorimetric titrations with DNA/RNA 

 

N-(anthracene-2-yl)guanidine (AGU) 
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Figure S8. Fluorimetric titration of AGU (c = 110-6 mol dm-3; λexc= 380 nm) with ct-DNA. RIGHT: 

dependence of fluorescence at λmax = 420 nm on c(DNA), red line is non-linear least square fitting of 

Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  

400 450 500 550 600 650 700

0

100

200

300

400

500

600

700

R
e

l.
 F

lu
o

. 
In

t.
 (

a
.u

.)

l / nm

 

0.0 2.0x10
-5

4.0x10
-5

6.0x10
-5

8.0x10
-5

1.0x10
-4

20

40

60

80

100

120

R
e

l.
 F

lu
o

. 
In

t.
 (

a
.u

.,
 5

5
0

 n
m

)

c (AT-DNA)

 

Figure S9. Fluorimetric titration of AGU (c = 110-6 mol dm-3; λexc= 380 nm) with p(dAdT)2. RIGHT: 

dependence of fluorescence at λmax = 550 nm on c(DNA), red line is non-linear least square fitting of 

Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.   
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Figure S10. Fluorimetric titration of AGU (c = 110-6 mol dm-3; λexc= 380 nm) with poly A - poly U. 

RIGHT: dependence of fluorescence at λmax = 420 nm on c(RNA), red line is non-linear least square fitting 

of Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  
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Figure S11. Fluorimetric titration of AGU (c = 110-6 mol dm-3; λexc= 380 nm) with GC-DNA. RIGHT: 

dependence of fluorescence at λmax = 420 nm on c(DNA). Too small changes did not allow accumulation of 

enough data points for accurate analysis by Scatchard eq. Done at pH = 7, sodium cacodylate buffer, I = 

0.05 mol dm-3. 

  



N-(pyrene-1-yl)guanidine (PyGU) 
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Figure S12. Fluorimetric titration of PyGU (c = 110-6 mol dm-3; λexc= 340 nm) with poly A - poly U. 

RIGHT: dependence of fluorescence at λmax = 383 nm on c(RNA), red line is non-linear least square fitting 

of Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  
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Figure S13. Fluorimetric titration of PyGU (c = 110-6 mol dm-3; λexc= 340 nm) with poly (dAdT)2. 

RIGHT: dependence of fluorescence at λmax = 383 nm on c(DNA), red line is non-linear least square fitting 

of Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  
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Figure S14. Fluorimetric titration of PyGU (c = 110-6 mol dm-3; λexc= 340 nm) with poly (dGdC)2. 

RIGHT: dependence of fluorescence at λmax = 383 nm on c(DNA), red line is non-linear least square fitting 

of Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  

 

5-(p-guanidinophenyl)-10,15,20-triphenylporphyrin (PoGU) 
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Figure S15. UV/vis and fluorimetric titration of PoGU (c = 110-6 mol dm-3; λexc= 420 nm) with ct-DNA. 

RIGHT: dependence of fluorescence at λmax = 650 nm on c(DNA), red line is non-linear least square fitting 

of Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  
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Figure S16. Fluorimetric titration of PoGU (c = 110-6 mol dm-3; λexc= 420 nm) with poly A - poly U. 

RIGHT: dependence of fluorescence at λmax = 650 nm on c(RNA), red line is non-linear least square fitting 

of Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  
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Figure S17. Fluorimetric titration of PoGU (c = 110-6 mol dm-3; λexc= 420 nm) with p(dAdT)2. RIGHT: 

dependence of fluorescence at λmax = 650 nm on c(DNA), red line is non-linear least square fitting of 

Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  
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Figure S18. Fluorimetric titration of PoGU (c = 110-6 mol dm-3; λexc= 420 nm) with GC-DNA. RIGHT: 

dependence of fluorescence at λmax = 650 nm on c(DNA), red line is non-linear least square fitting of 

Scatchard eq. (McGhee, vonHippel formalism) on experimental data. Done at pH = 7, sodium cacodylate 

buffer, I = 0.05 mol dm-3.  

 

 



Circular dichroism (CD) experiments 

240 260 280 300 320 340 360 380 400

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
C

D
 /

 m
d

e
g

l/ nm

 ct-DNA

 r=0.3

 

240 260 280 300 320 340 360 380 400

-4

-3

-2

-1

0

1

2

3

4

C
D

 /
 m

d
e

g

l/ nm

 AT-DNA

 r=0.1

 r=0.3

 r=0.5

 

240 260 280 300 320 340 360 380 400

-4

-2

0

2

4

6

8

C
D

 /
 m

d
e

g

l/ nm

 pUpA

 2aagv 0.1

 2aagv 0.3

 2aagv 0.5

 

240 260 280 300 320 340 360 380 400

-8

-6

-4

-2

0

2

4

C
D

 /
 m

d
e

g

l/ nm

 GC-DNA

 r=0.1

 r=0.3

 r=0.5

 

Figure S19. CD titration of ct-DNA, p(dAdT)2, poly A - poly U and GC-DNA (all DNA and RNA c = 

210-5 mol dm-3) with AGU at molar ratios r [AGU] / [polynucleotide] = 0.1 - 0.5. Done at pH = 7, sodium 

cacodylate buffer, I = 0.05 mol dm-3.  
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Figure S20. CD titration of ct-DNA, p(dAdT)2, poly A - poly U and GC-DNA (all DNA and RNA c = 

210-5 mol dm-3) with PyGU at molar ratios r [PyGU] / [polynucleotide] = 0.1 - 0.5. Done at pH = 7, sodium 

cacodylate buffer, I = 0.05 mol dm-3. 
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Figure S21. CD titration of ct-DNA, p(dAdT)2, poly A - poly U and GC-DNA (all DNA and RNA c = 

210-5 mol dm-3) with PoGU at molar ratios r [PoGU] / [polynucleotide] = 0.1 - 0.5. Done at pH = 7, sodium 

cacodylate buffer, I = 0.05 mol dm-3. 

 



V. Additional information 

 

Table S2: Groove widths and depths for selected nucleic acid conformations. Note (marked red) the drastic 

differences in minor groove dimensions between alternating ((dAdT)n, (dGdC)n) and homo-DNA 

(d(A)nd(T)n
 ), as well as major groove of ds-RNA.5 

 

 

 

 

 

 

aFor instance ct-DNA 
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Structure type Groove width [Å] Groove depth [Å]  

major minor major minor  

RNA AnUn 3.8 10.9 13.5 2.8  
aB-DNA 11.7 5.7 8.5 7.5  

(dGdC)n
 13.5 9.5 10.0 7.2  

(dAdT)n 11.2 6.3 - -  

d(A)nd(T)n 11.4 3.3 - -  


