Electronic supplementary information

Thermal decomposition of layered double hydroxide as a bottom up approach for the synthesis of metallic nanoparticles embedded in carbon structures

Caroline Silva de Matos,^a Camélia Matei Ghimbeu,^{b,c} Jocelyne Brendlé,^{b,c} Lionel Limousy^{b,c} and Vera Regina Leopoldo Constantino^{*a}

^c Université de Strasbourg, 67000 Strasbourg, France

Fig. S1 Ultraviolet-visible electronic absorption spectrum of LDH-Cl (curve smoothed by Adjacent-Averaging method). The material was mixed with barium sulfate (BaSO₄) and the solid state spectrum recorded in spectrophotometer Shimadzu UV-2401PC eqquiped with a integrating sphere.

^a Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-000 - São Paulo, SP, Brazil * vrlconst@iq.usp.br

^b Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS UMR 7361, 15 rue Jean Starcky, 68057 Mulhouse Cedex

Fig. S2 HT-XRD patterns of LDH-Cl recorded under He atmosphere, under same conditions used for LDH-CMC sample. * sample holder.

Fig. S3 Raman spectra of LDH-Cl-X series recorded using λ_{ex} of 532 nm.

Fig. S4 N_2 -adsorption/desorption isotherms of CMC-X (a) and LDH-CMC-X (b) samples series. *Inset* shows the curve of CMC-1000.

Fig. S5 XRD patterns of CMC-X materials pyrolyzed at the indicated temperature value.

Fig. S6 XRD patterns of residues from LDH-CMC-X thermal analysis under air atmosphere. *Inset*: detailed diffractograms.

Table S1 LDH-CMC-X residual mass from TG curves recorded under air atmosphere and experimental mass percentages of nickel and carbon.

Pyrolysis temperature (°C)	Residual mass ^a (%)	%Ni ^b	%C ^c
600	81.4	21.5	13.7
700	83.9	24.1	14.3
800	85.8	25.5	13.6
1000	92.1	39.0	13.1

^a Values obtained in the 200 - 900 °C range, in order to discount mass loss from dehydration process.

^b Values estimated from magnetization saturation (M_S) of bulk nickel (55.1 emu g⁻¹),¹ and the corresponding values of each sample (see Fig. S6), calculated by: $\% Ni = \frac{M_S}{M_S (bulk)} \cdot 100\%$

^c Data from elemental chemical analysis.

Fig. S7 LDH-CMC-X magnetization curves recorded at room temperature, containing the values of saturation magnetization (Ms) for the materials pyrolyzed from 600 to 1000 °C. The magnetization values were normalized by total mass of each material.

Reference

1 J. Crangle and G. M. Goodman, *Proc. R. Soc. A Math. Phys. Eng. Sci.*, 1971, **321**, 477–491.