Supplementary Information

Combined experimental and theoretical studies on Phenyl thiadiazole based novel *turn-on* fluorescent colorimetric Schiff base chemosensor for the selective and sensitive detection of Al³⁺

Amit Kumar Manna,^a Shubhamoy Chowdhury^b and Goutam K. Patra^{a*}

^aDepartment of Chemistry, Guru GhasidasVishwavidyalaya, Bilaspur (C.G),

India

^bDepartment of Chemistry, Gour Banga University, Malda, West Bengal 732 103, India

Fig. S1. Mass spectra of 1.

Fig. S2. ¹H-NMR spectra of 1.

Fig. S3. ¹³C-NMR spectra of 1.

Fig. S4. Mass spectra of L.

Fig. S5. FT-IR spectra of L.

Fig. S6. ¹H-NMR spectra of L.

Fig. S7. ¹³C-NMR spectra of L.

Fig. S8. Crystal structure of 1 with 40% ellipsoid.

Fig. S9. UV-Vis spectra of L in different solvents.

Fig. S10. Job's plot of L from absorption spectra.

Fig. S11. Mass spectra of L-Al³⁺adduct.

Fig. S12. Competitive experiment in presence of **L** and other metal ions (where 1 = L, $2 = Na^+$, $3 = K^+$, $4 = Mg^{2+}$, $5 = Fe^{3+}$, $6 = Ni^{2+}$, $7 = Co^{2+}$, $8 = Cd^{2+}$, $9 = Hg^{2+}$, $10 = Pb^{2+}$, $11 = Cu^{2+}$, $12 = Ag^+$, $13 = Zn^{2+}$, $14 = Mn^{2+}$ $15 = Al^{3+}$, $16 = Cr^{3+}$, $17 = Mn^{7+}$, $18 = Cr^{6+}$, $19 = Mo^{6+}$, $20 = Ga^{3+}$, $21 = Fe^{2+}$ and $22 = Pd^{2+}$) in methanol-*tris*-HCl buffer (10 mM, pH 7.2) solution (1:1 v/v)..

Fig. S13. Excitation and emission spectra of L and L-Al³⁺ adduct.

Fig. S14. Emission intensity change of L with slow addition of Al³⁺ion (inset: detection limit)

Fig. S15. Job's plot from emission spectra.

Fig. S16. pH effect of L and L–Al³⁺complex by fluorescence studies.

Fig. S17. Fluorometric reversibility study of L with Al³⁺ and Na₂EDTA

Fig. S18. Fluorometic time dependence.

Fig. S19. The MO diagram of L and 2 are showing the character and energy (eV) (th = thiadiazole moiety, np = methoxy nitrophenol moiety, im= iminomethyl moiety, ph = phenyl moiety).

Fig. S20. IR spectra of L and L+Al³⁺

 Table S1. Selected optimized bond lengths (Å) and angles (°) for L and 2.

L		2				
Bond lengths (Å)						
C1-N1	1.3056	Al1-O1	1.8605			
N1-C9	1.3853	Al1-O6	1.9112			
C1-C2	1.4639	Al1-O'1	1.8603			
C2-C3	1.4182	Al1-O5	1.9113			
C3-C4	1.3946	Al1-N1	2.1255			
C4-C5	1.4125	Al1-N'1	2.1260			
C5-C6	1.3892	N1-C1	1.3462			
C6-C7	1.4291	C1-C2	1.4210			
C7-O1	1.3676	C2-C7	1.4465			
C9-N2	1.3314	C7-O1	1.3041			
N2-N3	1.3980	N'1-C'1	1.3462			
N3-C10	1.3239	C'1-C'2	1.4210			
C6-O2	1.3957	C'2-C'7	1.4465			
O2-C8	1.4620	C'7-O'1	1.3041			
C4-N4	1.4677					
N4-O3	1.2830					
N4-O4	1.2800					
C9-S1	1.8320					
S1-C10	1.7994					
C10-C11	1.5400					
C11-12	1.3948					

Bond angle (°)			
C10-S1-C9	84.80	N1-Al1-O1	88.38
C10-N3-N2	112.81	N'1-Al1-O'1	88.38
N3-N2-C9	113.82	O5-Al1-O6	88.78
C9-N1-C1	120.29	N1-Al1-O6	91.72
N1-C1-C2	124.21	N'1-Al1-O6	93.37
C2-C3-C4	120.57	01-Al1-O5	88.42
C3-C4-N4	119.50	01-Al1-O'1	94.36
C5-C6-O2	125.98	N1-Al1-N'1	172.89
C6-C7-O1	117.98	O5-Al1-N1	93.33
C6-O2-C8	119.08	O5-Al1-N'1	91.73
N3-C10-C11	122.56	01-Al1-O6	177.20
C12-C11-C16	119.99	O'1-Al1-O5	177.22

Table S2. Electronic transitions of L and 2 calculated in methanol using the TD-DFT method.

Most important orbital excitations	λ	f	Experimental λ			
L						
$H \rightarrow L, H-2 \rightarrow L$	408.92	0.08125	410			
$H \rightarrow L+1, H-2 \rightarrow L+1$	369.03	0.16202	360			
$H-4\rightarrow L, H-2\rightarrow L, H\rightarrow L$	355.96	0.12405				
$H-2\rightarrow L+1, H-4\rightarrow L, H\rightarrow L+1$	337.50	0.04786				
H-4 \rightarrow L, H-2 \rightarrow L, H-2 \rightarrow L+1	316.40	0.08765				
$H-3\rightarrow L+1, H-3\rightarrow L$	312.11	0.00255	300			
$H-4\rightarrow L+1, H\rightarrow L+2$	289.39	0.26459				
$H-8\rightarrow L, H-8\rightarrow L+1, H-1\rightarrow L+2$	270.55	0.00117				
$H-7\rightarrow L, H\rightarrow L+2, H-10\rightarrow L, H-7\rightarrow L+1$	269.06	0.02430				
$H-8\rightarrow L+1, H-1\rightarrow L+2, H-8\rightarrow L$	264.06	0.00286				
$H-7\rightarrow L, H-7\rightarrow L+1, H\rightarrow L+2$	262.77	0.02271				
$H-10\rightarrow L, H-9\rightarrow L, H-9\rightarrow L+1, H-7\rightarrow L$	253.87	0.08143	252			
$H-7\rightarrow L+1, H\rightarrow L+2, H-9\rightarrow L$	249.73	0.01125				
$H-3\rightarrow L+2, H\rightarrow L+4$	246.70	0.00637				
$H-10\rightarrow L, H-9\rightarrow L+1$	245.06	0.02122				
$H-10\rightarrow L+1, H-2\rightarrow L+2, H\rightarrow L+3$	240.06	0.03555				
$H-10\rightarrow L+1, H-2\rightarrow L+2, H\rightarrow L+5$	237.92	0.00138				
$H-4\rightarrow L+2, H\rightarrow L+3, H-10\rightarrow L+1$	227.17	0.01008				
$H-4\rightarrow L+2, H\rightarrow L+3, H-9\rightarrow L$	222.29	0.10166				
$H-10\rightarrow L, H-9\rightarrow L, H-9\rightarrow L+1, H-4\rightarrow L+2$	221.07	0.09582				
$H-1\rightarrow L+3, H\rightarrow L+6$	218.24	0.00159				
$H-3\rightarrow L+2, H\rightarrow L+4$	215.21	0.04022	218sh			
$H-13\rightarrow L, H-2\rightarrow L+3, H\rightarrow L+5$	210.87	0.05242				
$H-13\rightarrow L, H\rightarrow L+5, H-16\rightarrow L$	209.08	0.02101				
$H-13\rightarrow L, H-7\rightarrow L+2, H-2\rightarrow L+3$	205.84	0.27067				

2			
$H \rightarrow L, H-4 \rightarrow L$	390.18	0.01165	
$H-1\rightarrow L+1, H-4\rightarrow L+1$	377.94	0.06551	350sh
$H \rightarrow L+2, H-6 \rightarrow L$	328.22	0.12722	
$H \rightarrow L+3, H-1 \rightarrow L+2$	316.84	0.00503	
$H-3\rightarrow L+1, H-2\rightarrow L, H-1\rightarrow L+2$	310.55	0.00722	
$H-2\rightarrow L, H-1\rightarrow L+2, H-3\rightarrow L+1$	310.39	0.11908	
$H-3\rightarrow L, H-2\rightarrow L+1, H-6\rightarrow L$	308.45	0.36716	302
$H-1\rightarrow L+3, H-3\rightarrow L+2$	305.52	0.05434	
$H-3\rightarrow L+1, H-2\rightarrow L, H-2\rightarrow L+1$	300.72	0.05792	
$H-3\rightarrow L+1, H-2\rightarrow L+1, H-3\rightarrow L$	300.54	0.14357	
$H-3\rightarrow L+2, H-2\rightarrow L+3, H-1\rightarrow L+3$	265.56	0.06692	
$H-3 \rightarrow L+3, H-2 \rightarrow L+2, H-2 \rightarrow L+3$	256.99	0.08235	250
$H-5\rightarrow L, H-5\rightarrow L+1$	255.84	0.00251	
$H-4\rightarrow L, H-5\rightarrow L$	255.80	0.00265	
$H-6\rightarrow L, H-2\rightarrow L+1$	231.58	0.13284	
$H-7\rightarrow L, H-6\rightarrow L+1$	229.94	0.0738	
$H-7\rightarrow L+1, H-6\rightarrow L+2$	224.46	0.1858	
H-9→L, H-11→L+1	214.90	0.65342	206
$H \rightarrow L+5, H-1 \rightarrow L+4$	213.70	0.00867	
$H-10\rightarrow L, H-8\rightarrow L, H-6\rightarrow L+2$	207.18	0.01311	
$H-7\rightarrow L+3, H-6\rightarrow L+2, H-10\rightarrow L$	206.71	0.0505	
$H-6\rightarrow L+2, H-1\rightarrow L+4, H\rightarrow L+5$	200.31	0.05037	

 λ -wavelength (nm); f - oscillator strength; H - highest occupied molecular orbital; L - lowest unoccupied molecular orbital.