Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New jornal of Chemistry

Supporting Information

for

Synthesis, Characterization and Photoinduced CO-

Release by Manganese(I) Complexes

André L. Amorim^{a,†}, Ana Guerreiro^{b,†}, Vinícius A. Glitz^a, Daniel F. Coimbra^a, Adailton J. Bortoluzzi^a, Giovanni F. Caramori^a, Antonio L. Braga^a, Ademir Neves^a, Gonçalo J. L. Bernardes^{b,c,*} and Rosely A. Peralta^{a,*}

^[a] Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil

^[b] Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa (Portugal)

^[c] Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)

[†]These authors contributed equally to this work.

List of Figures

Figure S1. ATR infrared spectrum for 15
Figure S2. ATR infrared spectrum for 2
Figure S3. ATR infrared spectrum for 3
Figure S4. ATR infrared spectrum for 4
Figure S5. Shifts in the normalized UV spectrum of 2 in dichloromethane (solid line) and acetonitrile initial (dashed line) and after 12 h incubation (dotted line)
Figure S6. Shifts in the normalized UV spectrum of 3 in dichloromethane (solid line) and acetonitrile initial (dashed line) and after 12 h incubation (dotted line)7
Figure S7. Changes in the IR spectrum of 2 in dichloromethane (solid line) and acetonitrile (dashed line)
Figure S8. Changes in the IR spectrum of 3 in dichloromethane (solid line) and acetonitrile (dashed line)
Figure S9. Mass spectrum for 1 in CH ₃ CN, where the base peak is attributed to the fragment $[Mn(CO)_3(dpa)]^+$ (<i>m</i> / <i>z</i> = 338). Inset graph shows the superposition of the experimental (solid line) and predicted (dashed lines) spectrum
Figure S10. Mass spectrum for 3_{py} in CH ₃ CN, where the base peak is attributed to the fragment [Mn(CO) ₃ (pmpea)] ⁺ (<i>m</i> / <i>z</i> = 352). Inset graph shows the superposition of the experimental (solid line) and predicted (dashed lines) spectra
Figure S11. Mass spectrum for 4_{py} in CH ₃ CN, where the base peak is attributed to the fragment [Mn(CO) ₃ (bpea)] ⁺ (m/z = 366). Inset graph shows the superposition of the experimental (soid line) and predicted (dashed lines) spectra10
Figure S12. ¹ H NMR spectrum of 1 in CDCl ₃ 10
Figure S13. ¹ H NMR spectrum of 3 in CDCl ₃ 11
Figure S14. ¹ H NMR spectrum of 4 in CDCl ₃ 11
Figure S15. The first five molecular orbitals (HOMO and LUMO) calculated for 1, 2, 2s, 3, 4 and 4py. The most prominent MOs involved in the transitions under lower energy band are shown
Figure S16. Decrease in the UV absorption bands in dichloromethane for 1 over time during exposure to λ_{380} light. Inset shows the decrease in the 354 nm reference band over time
Figure S17. Decrease in the UV absorption bands in acetonitrile for 1 over time during exposure to λ_{380} light. Inset shows the decrease in the 350 nm reference band over time
Figure S18. Decrease in the UV absorption bands in dichloromethane for 2 over time during exposure to λ_{380} light. Inset shows the decrease in the 380 nm reference band over time

Figure S19. Decrease in the UV absorption bands in acetonitrile for 2_s over time during exposure to λ_{380} light. Inset shows the decrease in the 363 nm reference band over time
Figure S20. Decrease in the UV absorption bands in dichloromethane for 3 over time during exposure to λ_{380} light. Inset shows the decrease in the 379 nm reference band over time.
Figure S21. Decrease in the UV absorption bands in acetonitrile for 3_{py} over time during exposure to λ_{380} light. Inset shows the decrease in the 364 nm reference band over time.
Figure S22. Decrease in the CO stretching bands in dichloromethane for 1 over time during exposure to λ_{380} light
Figure S23. Decrease in the CO stretching bands in acetonitrile for 1 over time during exposure to λ_{380} light
Figure S24. Decrease in the CO stretching bands in dichloromethane for 2 over time during exposure to λ_{380} light
Figure S25. Decrease in the CO stretching bands in dichloromethane for 3 over time during exposure to λ_{380} light
Figure S26. Decrease in the CO stretching bands in acetonitrile for 3_{py} over time during exposure to λ_{380} light
Figure S27. CO-release in aqueous solution. CO-release was measured (using COP- 1) from 490 to 650 nm (lex=475 nm). Photoemission spectra were obtained at 0, 10, 20, 30, 40, 50, 60, 70, 80 and 90 min after the addition of 1 μ M COP-1 to 150 μ mol L ⁻¹ of either [Mn(CO) ₃ (dpa)]Br (1) (a), [MnBr(CO) ₃ (bpa)] (2) (b), [MnBr(CO) ₃ (pmpea)] (3) (c) or [MnBr(CO) ₃ (bpea)] (4) (d) in PBS pH 7.4 at 37°C. The results are shown as emission intensity in relative fluorescent units (RFUs) and were normalized to the control
Figure S28. Cell viability after treatment with 1 - 4 . HeLa (a and b) and HepG2 (c and d) cells were incubated with several concentrations of 1 - 4 (1 µmol L ⁻¹ , 5 µmol L ⁻¹ , 10 µmol L ⁻¹ , 25 µmol L ⁻¹ , 50 µmol L ⁻¹ , 100 µmol L ⁻¹ and 150 µmol L ⁻¹) for 24 h (left panel) and 48h (right panel) . 1 – green line, 2 - red line, 3 - blue line and 4 - yellow line. To measure cell viability, cells were incubated with CellTiter-Blue (Promega) for 90 min at 37°C after which the absorbance was measured. The results are shown as a percentage of the control. 20
Figure S29. Quantification of CO-release in live HeLa cells at 5, 30, 45 and 60 min after the addition of 1 μ M COP-1 in PBS pH 7.4 (lem = 497-558nm ,lex = 488 nm). Cells were previously incubated with either compound (1), (2) or (3) at 150 μ M. The results are shown as mean fluorescence intensity (arbitrary units) in relation to the cell-surface area, normalized to control (cells in the absence of compounds). The compounds (1) and (3) show a statistically significant increase in CO-release compared to the control at 45min ((1) P<0,0001; (2) P=0,0012)) and at 60 min (P<0,0001), determined by a Mann Whitney test;

List of Tables

Table S1. Calculated and experimental CO stretching frequencies and the λ_{max} for theproposed structures.23
Table S2. Selected bond lengths (in Å), where X is the atom in the position trans to aCO. Values inside parenthesis obtained from crystal structure data
Table S3. Crystal data and structure refinement for complex 1
Table S4. Bond lengths [Å] and angles [°] for complex 1 1
Table S5. Torsion angles [°] for complex 1
Table S6. Hydrogen bonds for complex 1 [Å and °]
Table S7. Crystal data and structure refinement for complex 2
Table S8. Bond lengths [Å] and angles [°] for complex 2
Table S9. Torsion angles [°] for complex 2.
Table S10. Crystal data and structure refinement for complex 3
Table S11. Bond lengths [Å] and angles [°] for complex 3. 30
Table S12 Torsion angles [°] for complex 3
Table S13. Hydrogen bonds for complex 3 [Å and °]. 31

Figure S1. ATR infrared spectrum for 1.

Figure S2. ATR infrared spectrum for 2.

Figure S3. ATR infrared spectrum for 3.

Figure S4. ATR infrared spectrum for 4.

Figure S5. Shifts in the normalized UV spectrum of **2** in dichloromethane (solid line) and acetonitrile initial (dashed line) and after 12 h incubation (dotted line).

Figure S6. Shifts in the normalized UV spectrum of **3** in dichloromethane (solid line) and acetonitrile initial (dashed line) and after 12 h incubation (dotted line).

Figure S7. Changes in the IR spectrum of 2 in dichloromethane (solid line) and acetonitrile (dashed line).

Figure S8. Changes in the IR spectrum of 3 in dichloromethane (solid line) and acetonitrile (dashed line).

Figure S9. Mass spectrum for **1** in CH₃CN, where the base peak is attributed to the fragment $[Mn(CO)_3(dpa)]^+$ (*m*/*z* = 338). Inset graph shows the superposition of the experimental (solid line) and predicted (dashed lines) spectrum.

Figure S10. Mass spectrum for $\mathbf{3}_{py}$ in CH₃CN, where the base peak is attributed to the fragment [Mn(CO)₃(pmpea)]⁺ (m/z = 352). Inset graph shows the superposition of the experimental (solid line) and predicted (dashed lines) spectra.

Figure S11. Mass spectrum for $\mathbf{4}_{py}$ in CH₃CN, where the base peak is attributed to the fragment [Mn(CO)₃(bpea)]⁺ (*m/z* = 366). Inset graph shows the superposition of the experimental (soid line) and predicted (dashed lines) spectra.

Figure S12. ¹H NMR spectrum of 1 in CDCl₃.

Figure S13. ¹H NMR spectrum of 3 in CDCl₃.

Figure S14. ¹H NMR spectrum of 4 in CDCl₃.

Figure S15. The first five molecular orbitals (HOMO and LUMO) calculated for 1, 2, 2s, 3, 4 and 4py. The most prominent MOs involved in the transitions under lower energy band are shown.

Figure S16. Decrease in the UV absorption bands in dichloromethane for **1** over time during exposure to λ_{380} light. Inset shows the decrease in the 354 nm reference band over time.

Figure S17. Decrease in the UV absorption bands in acetonitrile for 1 over time during exposure to λ_{380} light. Inset shows the decrease in the 350 nm reference band over time.

Figure S18. Decrease in the UV absorption bands in dichloromethane for **2** over time during exposure to λ_{380} light. Inset shows the decrease in the 380 nm reference band over time.

Figure S19. Decrease in the UV absorption bands in acetonitrile for 2_s over time during exposure to λ_{380} light. Inset shows the decrease in the 363 nm reference band over time.

Figure S20. Decrease in the UV absorption bands in dichloromethane for **3** over time during exposure to λ_{380} light. Inset shows the decrease in the 379 nm reference band over time.

Figure S21. Decrease in the UV absorption bands in acetonitrile for $\mathbf{3}_{py}$ over time during exposure to λ_{380} light. Inset shows the decrease in the 364 nm reference band over time.

Figure S22. Decrease in the CO stretching bands in dichloromethane for 1 over time during exposure to λ_{380} light.

Figure S23. Decrease in the CO stretching bands in acetonitrile for **1** over time during exposure to λ_{380} light.

Figure S24. Decrease in the CO stretching bands in dichloromethane for 2 over time during exposure to λ_{380} light.

Figure S25. Decrease in the CO stretching bands in acetonitrile for 2_s over time during exposure to λ_{380} light.

Figure S25. Decrease in the CO stretching bands in dichloromethane for 3 over time during exposure to λ_{380} light.

Figure S26. Decrease in the CO stretching bands in acetonitrile for 3_{py} over time during exposure to λ_{380} light.

Figure S27. CO-release in aqueous solution. CO-release was measured (using COP-1) from 490 to 650 nm (lex=475 nm). Photoemission spectra were obtained at 0, 10, 20, 30, 40, 50, 60, 70, 80 and 90 min after the addition of 1 μ M COP-1 to 150 μ mol L⁻¹ of either [Mn(CO)₃(dpa)]Br (1) (a), [MnBr(CO)₃(bpa)] (2) (b), [MnBr(CO)₃(pmpea)] (3) (c) or [MnBr(CO)₃(bpea)] (4) (d) in PBS pH 7.4 at 37°C. The results are shown as emission intensity in relative fluorescent units (RFUs) and were normalized to the control.

Figure S28. Cell viability after treatment with **1-4**. HeLa (a and b) and HepG2 (c and d) cells were incubated with several concentrations of **1-4** (1 μ mol L⁻¹, 5 μ mol L⁻¹, 10 μ mol L⁻¹, 25 μ mol L⁻¹, 50 μ mol L⁻¹, 100 μ mol L⁻¹ and 150 μ mol L⁻¹) for 24 h (left panel) and 48h (right panel) . **1** – green line, **2** - red line, **3** - blue line and **4** - yellow line. To measure cell viability, cells were incubated with CellTiter-Blue (Promega) for 90 min at 37°C after which the absorbance was measured. The results are shown as a percentage of the control.

Figure S29. Quantification of CO-release in live HeLa cells at 5, 30, 45 and 60 min after the addition of 1 μ M COP-1 in PBS pH 7.4 (lem = 497-558nm ,lex = 488 nm). Cells were previously incubated with either compound (1), (2) or (3) at 150 μ M. The results are shown as mean fluorescence intensity (arbitrary units) in relation to the cell-surface area, normalized to control (cells in the absence of compounds). The compounds (1) and (3) show a statistically significant increase in CO-release compared to the control at 45min ((1) P<0,0001; (2) P=0,0012)) and at 60 min (P<0,0001), determined by a Mann Whitney test;

	1			2		3	3	py	4	1	4	py
	exp	calc										
v _{sym}	2025	2156	2019	2128	2020	2124	2030	2150	2020	2122	2036	2147
	1935	2098	1014	2072	1010	2066	1939	2089	1005	2063	1027	2085
v_{asym}	1910	2082	1914	2042	1910	2037	1935	2082	1905	2032	1927	2075
λμαχ	350	354	363	391	364	388	362	326	368	397	361	380

Table S1. Calculated and experimental CO stretching frequencies and the λ_{max} for the proposed structures.

Table S2. Selected bond lengths (in Å), where X is the atom in the position trans to a CO. Values inside parenthesis obtained from crystal structure data.

	Bond	Trans to	M–X	M–CO	C–O
	C(3)-O(3)	N(3)	1.910 (2.058)	1.722 (1.815)	1.170 (1.143)
1	C(1)-O(1)	N(1)	1.962 (2.078)	1.704 (1.808)	1.176 (1.146)
	C(2)-O(2)	N(2)	1.909 (2.062)	1.722 (1.803)	1.170 (1.144)
	C(1)-O(1)	N(1)	1.894 (2.101)	1.713 (1.805)	1.176 (1.146)
2	C(2)-O(2)	N(2)	1.972 (2.049)	1.704 (1.803)	1.178 (1.150)
	C(3)-O(3)	Br(1)	2.421 (2.5238)	1.697 (1.849)	1.185 (1.060)
	C(1)-O(1)	N(14)	1.937 (2.1117)	1.710 (1.811)	1.178 (1.147)
3	C(2)-O(2)	N(1)	2.003 (2.1269)	1.703 (1.8044)	1.178 (1.147)
	C(3)-O(3)	Br(1)	2.415 (2.5273)	1.693 (1.8002)	1.186 (1.129)

 Table S3. Crystal data and structure refinement for complex 1.

Empirical formula	$C_{15}H_{14}BrMnN_{3}O_{3.50}$
Formula weight	427.14
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 21.6165(7) A
	b = 11.8250(3) A
	C = 14.9206(5) A
	$\beta = 117.8640(10)^{3}$
Volume	3371.74(18) Å ³
Z	8
Density (calculated)	1.683 Mg/m ³
Absorption coefficient	3.173 mm ⁻¹
F(000)	1704
Crystal size	0.360 x 0.200 x 0.020 mm ³
Theta range for data collection	2.025 to 30.064°.
Index ranges	$-30 \le h \le 30, -16 \le k \le 11, -21 \le l \le 21$
Reflections collected	22881
Independent reflections	4947 [R(int) = 0.0365]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7460 and 0.6140
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4947 / 0 / 217
Goodness-of-fit on F ²	1.021
Final R indices [I>2sigma(I)]	R1 = 0.0299, wR2 = 0.0610
R indices (all data)	R1 = 0.0510, wR2 = 0.0690
Largest diff. peak and hole	0.682 and -0.426 e.Å ⁻³

Mn1-C2	1.803(2)	C5-C6	1.386(3)
Mn1-C1	1.809(2)	N2-C9	1.351(3)
Mn1-C3	1.813(2)	C9-C8	1.376(3)
Mn1-N3	2.0572(15)	C8-C7	1.372(4)
Mn1-N2	2.0624(16)	C7-C6	1.383(4)
Mn1-N1	2.0724(18)	C10-C11	1.496(3)
N1-C10	1.481(3)	C11-N3	1.347(2)
N1-C4	1.485(3)	C11-C12	1.391(3)
C3-O3	1.144(3)	N3-C15	1.344(2)
C1-O1	1.145(3)	C15-C14	1.379(3)
C2-O2	1.144(2)	C14-C13	1.379(3)
C4-C5	1.495(3)	C13-C12	1.379(3)
C5-N2	1.346(3)		
C2-Mn1-C1	88.26(9)	N2-C5-C6	122.1(2)
C2-Mn1-C3	89.78(9)	N2-C5-C4	115.01(17)
C1-Mn1-C3	88.27(10)	C6-C5-C4	122.9(2)
C2-Mn1-N3	89.53(8)	C5-N2-C9	117.96(18)
C1-Mn1-N3	98.23(8)	C5-N2-Mn1	115.45(13)
C3-Mn1-N3	173.44(9)	C9-N2-Mn1	126.43(14)
C2-Mn1-N2	175.47(8)	N2-C9-C8	122.8(2)
C1-Mn1-N2	93.10(́8)	C7-C8-C9	118.8(2)́
C3-Mn1-N2	94.58(8)	C8-C7-C6	119.4(2)
N3-Mn1-N2	86.00(6)	C7-C6-C5	118.9(2)
C2-Mn1-N1	98.57(8)́	N1-C10-C11	111.45(17)
C1-Mn1-N1	173.10(8)	N3-C11-C12	121.51(19)
C3-Mn1-N1	92.65(9)	N3-C11-C10	116.27(17)
N3-Mn1-N1	81.00(7)	C12-C11-C10	122.05(18)
N2-Mn1-N1	80.02(7)	C15-N3-C11	118.45(17)
C10-N1-C4	113.04(17)	C15-N3-Mn1	125.95(13)
C10-N1-Mn1	111.48(13)	C11-N3-Mn1	115.57(13)
C4-N1-Mn1	109.00(13)	N3-C15-C14	122.61(19)
O3-C3-Mn1	176.5(2)	C13-C14-C15	118.9(2)
O1-C1-Mn1	175.8(2)	C14-C13-C12	119.06(19)
O2-C2-Mn1	175.9(2)	C13-C12-C11	119.3(2)
N1-C4-C5	110.05(17)		. ,

Table S4. Bond lengths [Å] and angles [°] for complex 1.

C10-N1-C4-C5	89.5(2)	C4-N1-C10-C11	-101.4(2)
Mn1-N1-C4-C5	-35.09(19)	Mn1-N1-C10-C11	21.8(2)
N1-C4-C5-N2	28.6(2)	N1-C10-C11-N3	-21.3(3)
N1-C4-C5-C6	-153.16(19)	N1-C10-C11-C12	163.34(18)
C6-C5-N2-C9	-1.4(3)	C12-C11-N3-C15	4.0(3)
C4-C5-N2-C9	176.83(17)	C10-C11-N3-C15	-171.35(17)
C6-C5-N2-Mn1	174.18(16)	C12-C11-N3-Mn1	-174.41(15)
C4-C5-N2-Mn1	-7.6(2)	C10-C11-N3-Mn1	10.2(2)
C5-N2-C9-C8	-0.3(3)	C11-N3-C15-C14	-2.8(3)
Mn1-N2-C9-C8	-175.39(16)	Mn1-N3-C15-C14	175.49(14)
N2-C9-C8-C7	1.6(3)	N3-C15-C14-C13	0.1(3)
C9-C8-C7-C6	-1.2(4)	C15-C14-C13-C12	1.2(3)
C8-C7-C6-C5	-0.5(4)	C14-C13-C12-C11	0.0(3)
N2-C5-C6-C7	1.8(3)	N3-C11-C12-C13	-2.7(3)
C4-C5-C6-C7	-176.3(2)	C10-C11-C12-C13	172.42(19)

 Table S5.
 Torsion angles [°] for complex 1.

Table S6. Hydrogen bonds for complex 1 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O1W-H1WBr1 ⁱ	0.92	2.39	3.2766(13)	162
C4-H4BO1W	0.99	2.33	3.254(3)	155
N1-H1Br1 ⁱⁱ	0.83(3)	2.55(3)	3.3647(19)	170(2)

Symmetry codes: (i) x+1/2,y+1/2,z (ii) -x+1/2,y+1/2,-z+1/2

Empirical formula $C_{16}H_{15}BrMnN_3O_3$ Formula weight 432.16 Temperature 200(2) K 0.71073 Å Wavelength Crystal system Monoclinic Space group C2/c Unit cell dimensions a = 26.1164(8) Å b = 7.3867(2) Å c = 18.3010(6) Å $\beta = 102.9270(10)^{\circ}$ 3441.04(18) Å³ Volume Ζ 8 1.668 Mg/m³ Density (calculated) Absorption coefficient 3.108 mm⁻¹ 1728 F(000) 0.360 x 0.160 x 0.020 mm³ Crystal size Theta range for data collection 1.600 to 30.101°. Index ranges $-36 \le h \le 36$, $-6 \le k \le 10$, $-25 \le l \le 25$ Reflections collected 18246 Independent reflections 5051 [R(int) = 0.0316] Completeness to theta = 25.242° 99.7 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7460 and 0.6251 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 5051 / 0 / 221 Goodness-of-fit on F² 1.060 Final R indices [I>2sigma(I)] R1 = 0.0387, wR2 = 0.0880 R1 = 0.0600, wR2 = 0.0961 R indices (all data) 0.636 and -0.525 e.Å⁻³ Largest diff. peak and hole

Table S7. Crystal data and structure refinement for complex 3.

Br1-Mn1	2.5238(4)	N2-C9	1.345(3)
Mn1-C2	1.803(3)	C12-C13	1.392(4)
Mn1-C1	1.805(3)	C12-C11	1.504(4)
Mn1-C3	1.849(3)	C2-O2	1.150(4)
Mn1-N2	2.049(2)	C4-C5	1.499(3)
Mn1-N1	2.101(2)	C5-C6	1.389(3)
O1-C1	1.146(3)	C9-C8	1.379(4)
C3-O3	1.060(3)	C8-C7	1.376(4)
N1-C4	1.481(3)	C7-C6	1.385(4)
N1-C10	1.485(3)	C10-C11	1.535(4)
N3-C16	1.334(4)	C16-C15	1.387(5)
N3-C12	1.343(4)	C15-C14	1.381(5)
N2-C5	1.343(3)	C14-C13	1.369(5)
C2-Mn1-C1	88.48(13)	C9-N2-Mn1	126.20(18)
C2-Mn1-C3	90.20(12)	N3-C12-C13	122.1(3)
C1-Mn1-C3	90.27(11)	N3-C12-C11	116.5(2)
C2-Mn1-N2	174.42(10)	C13-C12-C11	121.4(3)
C1-Mn1-N2	94.59(10)	O2-C2-Mn1	176.8(3)
C3-Mn1-N2	94.44(9)	O1-C1-Mn1	178.8(3)
C2-Mn1-N1	97.73(11)	N1-C4-C5	109.7(2)
C1-Mn1-N1	173.35(10)	N2-C5-C6	122.2(2)
C3-Mn1-N1	92.07(10)	N2-C5-C4	115.5(2)
N2-Mn1-N1	79.03(8)	C6-C5-C4	122.3(2)
C2-Mn1-Br1	89.03(9)	N2-C9-C8	122.0(3)
C1-Mn1-Br1	90.37(8)	C7-C8-C9	119.5(2)
C3-Mn1-Br1	178.98(8)	C8-C7-C6	119.0(2)
N2-Mn1-Br1	86.29(6)	C7-C6-C5	118.7(3)
N1-Mn1-Br1	87.39(6)	N1-C10-C11	114.9(2)
C4-N1-C10	110.9(2)	C12-C11-C10	113.6(2)
C4-N1-Mn1	107.28(15)	N3-C16-C15	123.6(3)
C10-N1-Mn1	118.58(16)	C14-C15-C16	118.5(3)
C16-N3-C12	117.4(2)	C13-C14-C15	118.5(3)
C5-N2-C9	118.5(2)	C14-C13-C12	119.8(3)
C5-N2-Mn1	115.26(15)	O3-C3-Mn1	178.0(3)

Table S8. Bond lengths [Å] and angles [°] for complex 3.

Table S9	. Torsion	angles	[°] for	complex 3.
----------	-----------	--------	---------	------------

C16-N3-C12-C13	2.0(4)	C8-C7-C6-C5	1.8(4)
C16-N3-C12-C11	-178.3(3)	N2-C5-C6-C7	0.6(4)
C10-N1-C4-C5	168.8(2)	C4-C5-C6-C7	-179.4(2)
Mn1-N1-C4-C5	37.8(2)	C4-N1-C10-C11	62.5(3)
C9-N2-C5-C6	-2.8(3)	Mn1-N1-C10-C11	-172.73(19)
Mn1-N2-C5-C6	177.67(18)	N3-C12-C11-C10	-61.6(3)
C9-N2-C5-C4	177.2(2)	C13-C12-C11-C10	118.0(3)
Mn1-N2-C5-C4	-2.3(3)	N1-C10-C11-C12	73.5(3)
N1-C4-C5-N2	-24.5(3)	C12-N3-C16-C15	-0.4(5)
N1-C4-C5-C6	155.5(2)	N3-C16-C15-C14	-1.2(5)
C5-N2-C9-C8	2.6(3)	C16-C15-C14-C13	1.3(5)
Mn1-N2-C9-C8	-177.95(18)	C15-C14-C13-C12	0.2(5)
N2-C9-C8-C7	-0.2(4)	N3-C12-C13-C14	-2.0(4)
C9-C8-C7-C6	-2.0(4)	C11-C12-C13-C14	178.4(3)

 Table S10. Crystal data and structure refinement for complex 4.

Empirical formula	C ₁₇ H ₁₇ BrMnN ₃ O ₃
Formula weight	446.18
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 8.0271(4) Å
	b = 9.3057(5) A
	c = 12.9921(7) A
	$\alpha = 87.029(2)^{\circ}$
	$\beta = 89.037(2)^{\circ}$
	$\gamma = 67.346(2)^{\circ}$
Volume	894.40(8) Å ³
Z	2
Density (calculated)	1.657 Mg/m ³
Absorption coefficient	2.992 mm ⁻¹
F(000)	448
Crystal size	0.300 x 0.080 x 0.060 mm ³
Theta range for data collection	2.374 to 28.373°.
Index ranges	-10 ≤ h ≤ 10, -12 ≤ k ≤ 12, -17 ≤ l ≤ 17
Reflections collected	15466
Independent reflections	4475 [R(int) = 0.0195]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8409 and 0.4672
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4475 / 0 / 230
Goodness-of-fit on F ²	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0235, wR2 = 0.0530
R indices (all data)	R1 = 0.0335, wR2 = 0.0564
Largest diff. peak and hole	0.326 and -0.242 e.Å ⁻³

Mn1-C3	1.8002(19)	C13-C18	1.392(2)
Mn1-C2	1.8044(19)	N14-C15	1.351(2)
Mn1-C1	1.811(2)	C15-C16	1.374(2)
Mn1-N14	2.1117(13)	C16-C17	1.377(2)
Mn1-N1	2.1269(14)	C17-C18	1.380(2)
Mn1-Br1	2.5273(3)	C21-C22	1.529(3)
C1-O1	1.147(2)	C22-C23	1.509(2)
C2-O2	1.147(2)	C23-N24	1.332(2)
C3-O3	1.129(2)	C23-C28	1.380(3)
N1-C11	1.479(2)	N24-C25	1.338(3)
N1-C21	1.493(2)	C25-C26	1.369(3)
C11-C12	1.522(2)	C26-C27	1.371(3)
C12-C13	1.505(2)	C27-C28	1.383(3)
C13-N14	1.352(2)		
C3-Mn1-C2	90.32(8)	C13-C12-C11	111.47(13)
C3-Mn1-C1	91.41(9)	N14-C13-C18	121.26(15)
C2-Mn1-C1	85.25(9)	N14-C13-C12	118.20(14)
C3-Mn1-N14	91.95(6)	C18-C13-C12	120.39(14)
C2-Mn1-N14	92.58(7)	C15-N14-C13	117.41(14)
C1-Mn1-N14	176.01(8)	C15-N14-Mn1	118.47(11)
C3-Mn1-N1	93.06(7)	C13-N14-Mn1	124.00(11)
C2-Mn1-N1	174.76(7)	N14-C15-C16	123.70(15)
C1-Mn1-N1	90.66(7)	C15-C16-C17	118.91(16)
N14-Mn1-N1	91.30(5)	C16-C17-C18	118.36(16)
C3-Mn1-Br1	178.81(6)	C17-C18-C13	120.35(15)
C2-Mn1-Br1	90.64(6)	N1-C21-C22	114.56(15)
C1-Mn1-Br1	89.37(7)	C23-C22-C21	113.90(15)
N14-Mn1-Br1	87.30(4)	N24-C23-C28	121.70(17)
N1-Mn1-Br1	86.03(4)	N24-C23-C22	116.53(15)
O1-C1-Mn1	175.59(19)	C28-C23-C22	121.76(16)
O2-C2-Mn1	175.43(17)	C23-N24-C25	118.00(17)
O3-C3-Mn1	178.99(17)	N24-C25-C26	123.7(2)
C11-N1-C21	111.13(13)	C25-C26-C27	118.3(2)
C11-N1-Mn1	115.45(10)	C26-C27-C28	118.72(19)
C21-N1-Mn1	115.98(11)	C23-C28-C27	119.56(19)
N1-C11-C12	112.25(14)		

Table S11. Bond lengths [Å] and angles $[\degree]$ for complex 4.

C21-N1-C11-C12	87.95(17)	C12-C13-C18-C17	-174.71(16)
Mn1-N1-C11-C12	-46.80(16)	C11-N1-C21-C22	74.13(18)
N1-C11-C12-C13	82.32(18)	Mn1-N1-C21-C22	-151.39(12)
C11-C12-C13-N14	-48.8(2)	N1-C21-C22-C23	68.5(2)
C11-C12-C13-C18	126.88(16)	C21-C22-C23-N24	-23.8(2)
C18-C13-N14-C15	-1.9(2)	C21-C22-C23-C28	157.05(18)
C12-C13-N14-C15	173.75(14)	C28-C23-N24-C25	1.3(3)
C18-C13-N14-Mn1	173.92(12)	C22-C23-N24-C25	-177.9(2)
C12-C13-N14-Mn1	-10.4(2)	C23-N24-C25-C26	-0.7(4)
C13-N14-C15-C16	1.5(2)	N24-C25-C26-C27	-0.3(4)
Mn1-N14-C15-C16	-174.58(13)	C25-C26-C27-C28	0.8(4)
N14-C15-C16-C17	0.0(3)	N24-C23-C28-C27	-0.8(3)
C15-C16-C17-C18	-1.1(3)	C22-C23-C28-C27	178.35(19)
C16-C17-C18-C13	0.7(3)	C26-C27-C28-C23	-0.3(3)
N14-C13-C18-C17	0.8(3)		

 Table S12..
 Torsion angles [°] for complex 4.

Table S13. Hydrogen bonds for complex 4 [Å and $^\circ\mbox{]}.$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N1-H1NN24	0.83(2)	2.19(2)	2.850(2)	135.7(17)
N1-H1NBr1	0.83(2)	2.77(2)	3.1885(14)	113.2(16)