Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

DFT and Hybrid-DFT calculations on the electronic properties of vanadate materials: theory meets experiments

Romain Schira^a and Camille Latouche^{*a}

^a Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France. E-mail: camille.latouche@univ-nantes.fr

Contents

1	$\rm Sr_2V_2O_7$	2
2	$\mathrm{Ba_2V_2O_7}$	8
3	Ca_2VO_4Cl	13
4	$\rm Sr_2VO_4Cl$	18
5	$\mathrm{Mg}_3\mathrm{V}_2\mathrm{O}_8$	23
6	$ m Zn_3V_2O_8$	28

$1 \quad Sr_2V_2O_7$

Fig-SI 1: Conventional cell of $Sr_2V_2O_7$ taken from [1]. This cell contains 44 atoms. The Sr atoms are in green, the O atoms are in red, and the vanadium are represented by the gray polyhedron. The experimentally measured cell parameters and angles of the conventional cell are also given.

Fig-SI 2: Experimental and theoretical (calculated with PBE, PBE+U and HSE06) inter-atomic V-O distances in Å of V₂O₇ clusters contain in Sr₂V₂O₇. The reported distances are labeled by numbers and the corresponding positions are indicated by the pictures. Experimental data taken from [1].

Fig-SI 3: DOS of $Sr_2V_2O_7$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the strontium, vanadium and oxygen atoms are represented in green, gray and red, respectively.

Fig-SI 4: Projected DOS of $\text{Sr}_2\text{V}_2\text{O}_7$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the strontium (s, p, d), vanadium (s, p, d) and oxygen (s, p) orbitals are represented in green, gray and red, respectively.

Fig-SI 5: Band structure of $Sr_2V_2O_7$ calculated with PBE (top) and HSE06 (bottom) functionals. The considered path and high symmetry K-points are defined in [2]. For technical reasons we were unable to converge the band structure of this material in HSE06.

Fig-SI 6: Imaginary part of the dielectric tensor ϵ_2 of $\text{Sr}_2\text{V}_2\text{O}_7$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The components ϵ_{2xx} , ϵ_{2yy} and ϵ_{2zz} are in orange, green and blue, respectively.

Fig-SI 7: Trace of the imaginary part of the dielectric tensor ϵ_2 (blue), of the refractive index n (green), and of extinction coefficient k (red) of $\text{Sr}_2\text{V}_2\text{O}_7$, calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals.

$2 \quad \mathrm{Ba_2V_2O_7}$

Fig-SI 8: Conventional cell of $Ba_2V_2O_7$ taken from [3]. This cell contains 44 atoms. The Ba atoms are in green, the O atoms are in red, and the vanadium are represented by the gray polyhedron. The experimentally measured cell parameters and angles of the conventional cell are also given.

		$\mathrm{Ba}_{2}\mathrm{V}_{2}\mathrm{O}_{7}$	Expt	PBE	PBE+U	HSE06
		1	1.705	1.722	1.727	1.702
		2	1.666	1.699	1.701	1.666
		3	1.687	1.700	1.703	1.679
2		4	1.824	1.833	1.845	1.816
5	10	5	1.818	1.831	1.842	1.816
2	13 11	6	1.686	1.711	1.715	1.689
4	4 9 12 13 14 14 16 15	7	1.692	1.714	1.718	1.690
1		8	1.663	1.695	1.697	1.669
5		9	1.669	1.689	1.691	1.663
		10	1.698	1.720	1.725	1.698
9		11	1.700	1.717	1.721	1.693
9769		12	1.833	1.837	1.849	1.820
		13	1.815	1.824	1.836	1.803
		14	1.666	1.698	1.700	1.674
		15	1.677	1.704	1.706	1.681
		16	1.700	1.724	1.729	1.701
		Average	1.719	1.739	1.744	1.716

Fig-SI 9: Experimental and theoretical (calculated with PBE, PBE+U and HSE06) inter-atomic V-O distances in Å of V₂O₇ clusters contain in Ba₂V₂O₇. The reported distances are labeled by numbers and the corresponding positions are indicated by the pictures. Experimental data taken from [3].

Fig-SI 10: DOS of $Ba_2V_2O_7$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the barium, vanadium and oxygen atoms are represented in green, gray and red, respectively.

Fig-SI 11: Band structure of $Ba_2V_2O_7$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The considered path and high symmetry K-points are defined in [2].

Fig-SI 12: Imaginary part of the dielectric tensor ϵ_2 of $\text{Ba}_2\text{V}_2\text{O}_7$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The components ϵ_{2xx} , ϵ_{2yy} and ϵ_{2zz} are in orange, green and blue, respectively.

Fig-SI 13: Trace of the imaginary part of the dielectric tensor ϵ_2 (blue), of the refractive index n (green), and of extinction coefficient k (red) of $\text{Sr}_2\text{V}_2\text{O}_7$, calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals.

$3 Ca_2VO_4Cl$

Fig-SI 14: Conventional cell of Ca_2VO_4Cl taken from [4]. This cell contains 32 atoms. The Ca atoms are in green, the O atoms are in red, the Cl atoms are in brown, and the vanadium are represented by the gray polyhedron. The experimentally measured cell parameters and angles of the conventional cell are also given.

Fig-SI 15: Experimental and theoretical (calculated with PBE, PBE+U and HSE06) inter-atomic V-O distances in Å of the VO₄ cluster contain in Ca₂VO₄Cl. The reported distances are labeled by numbers and the corresponding positions are indicated by the pictures. Experimental data taken from [4].

Fig-SI 16: DOS of Ca_2VO_4Cl calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the calcium, vanadium, chlorine and oxygen atoms are represented in green, gray, brown and red, respectively.

Fig-SI 17: Band structure of Ca_2VO_4Cl calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The considered path and high symmetry K-points are defined in [2].

Fig-SI 18: Imaginary part of the dielectric tensor ϵ_2 of Ca₂VO₄Cl calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The components ϵ_{2xx} , ϵ_{2yy} and ϵ_{2zz} are in orange, green and blue, respectively.

Fig-SI 19: Trace of the imaginary part of the dielectric tensor ϵ_2 (blue), of the refractive index n (green), and of extinction coefficient k (red) of Ca₂VO₄Cl, calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals.

$4 Sr_2VO_4Cl$

Fig-SI 20: Conventional cell of Sr_2VO_4Cl taken from [5]. This cell contains 32 atoms. The Sr atoms are in green, the O atoms are in red, the Cl atoms are in brown, and the vanadium are represented by the gray polyhedron. The experimentally measured cell parameters and angles of the conventional cell are also given.

Fig-SI 21: Experimental and theoretical (calculated with PBE, PBE+U and HSE06) inter-atomic V-O distances in Å of the VO₄ cluster contain in Sr₂VO₄Cl. The reported distances are labeled by numbers and the corresponding positions are indicated by the pictures. Experimental data taken from [5].

Fig-SI 22: DOS of Sr_2VO_4Cl calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the strontium, vanadium, chlorine and oxygen atoms are represented in green, gray, brown and red, respectively.

Fig-SI 23: Band structure of Sr_2VO_4Cl calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The considered path and high symmetry K-points are defined in [2].

Fig-SI 24: Imaginary part of the dielectric tensor ϵ_2 of Sr₂VO₄Cl calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The components ϵ_{2xx} , ϵ_{2yy} and ϵ_{2zz} are in orange, green and blue, respectively.

Fig-SI 25: Trace of the imaginary part of the dielectric tensor ϵ_2 (blue), of the refractive index n (green), and of extinction coefficient k (red) of $\text{Sr}_2\text{VO}_4\text{Cl}$, calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals.

$5 Mg_3V_2O_8$

Fig-SI 26: Conventional cell of $Mg_3V_2O_8$ taken from [6]. This cell contains 52 atoms. The Mg atoms are in green, the O atoms are in red, and the vanadium are represented by the gray polyhedron. The experimentally measured cell parameters and angles of the conventional cell are also given.

$Mg_3V_2O_8$	Expt	PBE	PBE+U	HSE06
1	1.695	1.716	1.722	1.692
2	1.809	1.810	1.823	1.786
3	1.716	1.732	1.737	1.706
Average	1.729	1.743	1.751	1.719

Fig-SI 27: Experimental and theoretical (calculated with PBE, PBE+U and HSE06) inter-atomic V-O distances in Å of the VO₄ cluster contain in Mg₃V₂O₈. The reported distances are labeled by numbers and the corresponding positions are indicated by the pictures. Experimental data taken from [6].

Fig-SI 28: DOS of $Mg_3V_2O_8$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the magnesium, vanadium, and oxygen atoms are represented in green, gray and red, respectively.

Fig-SI 29: Band structure of $Mg_3V_2O_8$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The considered path and high symmetry K-points are defined in [2]. In the reciprocal space, the points Y and X_1 , as well as the points A_1 and T, are very close but does not coincide.

Fig-SI 30: Imaginary part of the dielectric tensor ϵ_2 of Mg₃V₂O₈ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The components ϵ_{2xx} , ϵ_{2yy} and ϵ_{2zz} are in orange, green and blue, respectively.

Fig-SI 31: Trace of the imaginary part of the dielectric tensor ϵ_2 (blue), of the refractive index n (green), and of extinction coefficient k (red) of Mg₃V₂O₈, calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals.

$6 Zn_3V_2O_8$

Fig-SI 32: Conventional cell of $Zn_3V_2O_8$ taken from [7]. This cell contains 52 atoms. The Zn atoms are in green, the O atoms are in red, and the vanadium are represented by the gray polyhedron. The experimentally measured cell parameters and angles of the conventional cell are also given.

Fig-SI 33: Experimental and theoretical (calculated with PBE, PBE+U and HSE06) inter-atomic V-O distances in Å of the VO₄ cluster contain in $Zn_3V_2O_8[7]$. The reported distances are labeled by numbers and the corresponding positions are indicated by the pictures.

Fig-SI 34: DOS of $Zn_3V_2O_8$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The contribution of the zinc, vanadium, and oxygen atoms are represented in green, gray and red, respectively.

Fig-SI 35: Band structure of $Zn_3V_2O_8$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The considered path and high symmetry K-points are defined in [2].

Fig-SI 36: Imaginary part of the dielectric tensor ϵ_2 of $\text{Zn}_3\text{V}_2\text{O}_8$ calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals. The components ϵ_{2xx} , ϵ_{2yy} and ϵ_{2zz} are in orange, green and blue, respectively.

Fig-SI 37: Trace of the imaginary part of the dielectric tensor ϵ_2 (blue), of the refractive index n (green), and of extinction coefficient k (red) of $\text{Zn}_3\text{V}_2\text{O}_8$, calculated with PBE (top), PBE+U (middle) and HSE06 (bottom) functionals.

References

- [1] J. Huang and A. W. Sleight. Crystal structure of high temperature strontium pyrovanadate. *Mater. Res. Bull.*, 27(5):581–590, 1992.
- [2] W. Setyawan and S. Curtarolo. High-throughput electronic band structure calculations: Challenges and tools. *Comput. Mater. Sci.*, 49(2):299–312, 2010.
- [3] F. C. Hawthorne and C. Calvo. The crystal structure of ceBa2V2O7. J. Solid State Chem., 26(4):345–355, 1978.
- [4] E. Banks, M. Greenblatt, and B. Post. Crystal structures of synthetic spodiosites. calcium chloride vanadate (V), Ca₂VO₄Cl, and calcium chloride arsenate, Ca₂AsO₄Cl. *Inorg. Chem.*, 9(10):2259–2264, 1970.
- [5] C. Albrecht, S. Cohen, I. Mayer, and D. Reinen. The structure of Sr₂(VO₄)Cl and Sr₂(CrO₄)Cl and spectroscopic properties of Mn⁵⁺ and Cr⁵⁺-doped Sr₂(VO₄)Cl. J. Solid State Chem., 107(1):218–228, 1993.
- [6] N. T. Krishnamachari and C. Calvo. Refinement of the structure of $Mg_3(VO_4)_2$. Can. J. Chem., 49(10):1629–1637, 1971.
- [7] R. Gopal and C. Calvo. Crystal structure of α -Zn₃(VO₄)₂. Can. J. Chem., 49(18):3056–3059, 1971.