Supporting Information

The first report of a tetra-azide bound mononuclear cobalt(III) complex and its comparative biomimetic catalytic activity with triazide bound cobalt(III) compounds

Narayan Ch. Jana ^a, Paula Brandão ^b and Anangamohan Panja *a,c

^a Postgraduate Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India

^b Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

^c Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.

*Corresponding Author

E-mail: ampanja@yahoo.co.in

Fig. S1. Hydrogen bonded supramolecular chain structure of 2 propagating along the *a* axis.

Fig. S2. Hydrogen bonded zig-zag supramolecular chain structure of **3** propagating along the *c* axis.

Fig. S3. The time resolved spectral profile showing oxidation of *o*-aminophenol $(1.0 \times 10^{-2} \text{ M})$ catalysed by 3 $(1 \times 10^{-5} \text{ M})$ in dioxygen-saturated methanol. The spectra were recorded at 5 min intervals under aerobic conditions at room temperature.

Fig. S4. The time resolved spectral profile showing oxidation of 2-amino-5-methylphenol (5 \times 10⁻³ M) catalysed by **3** (2 \times 10⁻⁵ M) in dioxygen-saturated methanol. The spectra were recorded at 5 min intervals under aerobic conditions at room temperature.

Fig S5. Increase of the phenoxazinone band at 388 nm after the addition of 2-amino-4methylphenol to a methanol solution with complexes **1** and **2**. The spectra were recorded at 5 min intervals.

Fig. S6. Initial rate versus substrate concentration plot for the oxidation of substituted aminophenols (left side for 2-amino-5-methylphenol and right side for 2-amino-4-methylphenol) in dioxygen-saturated methanol catalysed by complexes **1–3** at room temperature. Symbols and solid lines represent the experimental and simulated profiles, respectively.

	1	2	3
N1-Co1-N2	90.2(2)	86.15(6)	85.07(7)
N1-Co1-N3		170.76(6)	171.38(7)
N1-Co1-N4	87.1(2)	90.05(6)	87.87(8)
N1-Co1-N7	173.9(3)	90.41(6)	94.82(7)
N1-Co1-N10	85.6(3)	91.49(6)	87.64(7)
N1-Co1-N13	93.3(3)		
N2-Co1-N3		86.09(6)	86.33(7)
N2-Co1-N4	87.4(2)	86.54(6)	84.91(8)
N2-Co1-N7	94.3(2)	176.10(6)	177.25(8)
N2-Co1-N10	175.8(3)	89.57(6)	88.25(8)
N2-Co1-N13	89.5(3)		
N4-Co1-N3		94.49(6)	91.97(7)
N4-Co1-N7	89.1(3)	91.65(6)	92.35(7)
N4-Co1-N10	91.6(3)	175.71(6)	172.11(7)
N4-Co1-N13	176.9(3)		
N7-Co1-N3		97.49(6)	93.79(7)
N7-Co1-N10	89.7(3)	92.35(6)	94.49(7)
N7-Co1-N13	90.7(3)		
N10-Co1-N3		83.43(6)	91.50(6)
N10-Co1-N13	91.5(3)		
N–N–N(azide)	176.0(9)	176.88(17)	175.7(2)
	176.1(7)	176.89(16)	176.2(2)
	176.1(8)	177.86(18)	176.2(2)
	178.1(9)		
N–N–Co	117.1(5)	119.33(11)	122.32(13)
	125.4(5)	120.73(11)	121.13(14)
	120.2(5)	119.73(11)	120.77(13)
	120.6(5)		

Table S1: Selected bond angles (°) for complexes **1–3**.

Fig. S7. Electrospray ionization mass spectrum (ESI-MS positive) of a 1:20 mixture of complex2 and *o*-aminophenol in methanol recorded after 5 min of mixing.

Fig. S8. Electrospray ionization mass spectrum (ESI-MS positive) of a 1:20 mixture of complex2 and 2-amino-5-methylphenol in methanol recorded after 10 min of mixing.

Fig. S9. Rate dependency on the dioxygen concentration for the complex 1 catalysed oxidation of *o*-aminophenol using the concentration of O_2 in air-saturated methanol solution was taken as $2.0 \times 10-3$ M.^{S1}

References

S1 M. Quaranta, M. Murkovicb and I. Klimant, *Analyst*, 2013, **138**, 6243–6245.