Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

For

Cu(I) based catalysts derived from bidentate ligands and studies on the effect of substituents for N-arylation of benzimidazoles and indoles

Sheela Kumari,^a Anand Ratnam,^b Kiran Mawai,^a Virendra Kumar Chaudhary,^a Aurobinda Mohanty,^a Kaushik Ghosh^{*a}

^a Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.

E-mail: kaushik.ghosh@cy.iitr.ac.in, ghoshfcy@iitr.ac.in

^b Department of Chemistry, DDU Gorakhpur University, Gorakhpur, 273009, India

Table S1 Crystal data of complex C1.

Empirical formula	C36 H30 Cl Cu N3 P
Formula weight (gmol ⁻¹)	634.60
Space group	P 31
Temperature /K	293(2)
λ (Å) (Mo-K α)	0.71073
Crystal system	Hexagonal
a (Å)	10.2089(3)
b (Å)	10.2089(3)
c (Å)	26.3489(10)
$\alpha(°)$	90.00
γ (°)	120.00
β(°)	90.00
V (Å ³)	2378.21(17)
Z	3
$\rho_{calc}(gcm^{-3})$	1.329
Crystal size (mm)	0.23x 0.23x 0.23
F(000)	984.0
Theta range for data collection	2.46-27.13
Index ranges	−11 <h 11,<="" <="" td=""></h>
	-11 <k <11,<="" td=""></k>
	-29 < l < 29.
Data/restraints/parameters	4852/1/380
GOF ^a on F ²	1.030
$R1^{b}\left[I > 2\sigma(I)\right]$	0.0336
R1[all data]	0.0365
$wR2^{c}[I > 2\sigma(I)]$	0.0710
wR2 [all data]	0.0720

^aGOF = $[\Sigma[w(F_o^2 - F_c^2)^2] / M - N]^{1/2}$ (M = number of reflections, N = number of parameters refined). ^bR1 = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^c $wR2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma [(F_o^2)^2]]^{1/2}$.
 Table S2 Bond distances and bond angles of complex C1.

Bond distance (A ^o)							
Cu(1)-Cl(1)	2.2787(19)	Cu(1)-N(3)	2.182(6)				
Cu(1)-N(1)	2.067(6)	Cu(1)-P(1)	2.1889(17)				
N(2)-N(3)	1.384(8)						
Bond angle(°)							
N(1)-Cu(1)-N(3)	77.1(2)	N(1)-Cu(1)-P(1)	117.32(18)				
N(1)-Cu(1)-Cl(1)	106.84(17)	N(3)-Cu(1)-Cl(1)	117.15(15)				
P(1)-Cu(1)-Cl(1)	121.46(7)						

Table S3 Optimization table for N-arylation of benzimidazole to synthesize 1-phenyl-1H-
benzo[d]imidazole.

S. No	Catalyst	Heterocycle	Haloarene	Base	Solvent	Product	% Yield ^a			
			E	ffect of Ca	talysts					
1.	C1	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	74			
2.	C2	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	89			
3.	C3	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	68			
4.	C4	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	61			
	Effect of Solvents									
5.	C2	Benzimidazole	Iodobenzene	NaOH	Toulene	1-phenyl-1H-benzo[d]imidazole	69			
6.	C2	Benzimidazole	Iodobenzene	NaOH	DMF	1-phenyl-1H-benzo[d]imidazole	77			
7.	C2	Benzimidazole	lodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	89			
				Effect of E	Bases					
8.	C2	Benzimidazole	Iodobenzene	КОН	DMSO	1-phenyl-1H-benzo[d]imidazole	76			
9.	C2	Benzimidazole	Iodobenzene	K ₂ CO ₃	DMSO	1-phenyl-1H-benzo[d]imidazole	68			
10.	C2	Benzimidazole	Iodobenzene	KO ^t Bu	DMSO	1-phenyl-1H-benzo[d]imidazole	72			
11.	C2	Benzimidazole	lodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	89			
Effect of Catalyst Loading										
12.	C2 (0mol%)	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	0			
13.	C2 (1mol%)	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	30			
14.	C2 (2mol%)	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	55			
15.	C2 (3mol%)	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	67			
16.	C2 (4mol%)	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	74			
17.	C2 (5mol%)	Benzimidazole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-benzo[d]imidazole	89			

^a represents the isolated yield.

S.No	Catalyst	Heterocycle	Haloarene	Base	Solvent	Product	% Yield ^a	
			Eff	fect of Catal	ysts			
1.	C1	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	74	
2.	C2	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	87	
3.	C3	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	63	
4.	C4	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	52	
					_			
	Effect of Solvents							
5.	C2	Indole	Iodobenzene	NaOH	Toulene	1-phenyl-1H-indole	59	
6.	C2	Indole	Iodobenzene	NaOH	DMF	1-phenyl-1H-indole	73	
7.	C2	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	87	
			E	Effect of Bas	es			
8.	C2	Indole	lodobenzene	КОН	DMSO	1-phenyl-1H-indole	72	
9.	C2	Indole	lodobenzene	K ₂ CO ₃	DMSO	1-phenyl-1H-indole	59	
10.	C2	Indole	Iodobenzene	KO ^t Bu	DMSO	1-phenyl-1H-indole	70	
11.	C2	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	87	
	Effect of Catalyst Loading							
12.	C2 (0 mol%)	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	0	
13.	C2 (1 mol%)	Indole	lodobenzene	NaOH	DMSO	1-phenyl-1H-indole	27	
14.	C2 (2 mol%)	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	51	
15.	C2 (3 mol%)	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	69	
16.	C2 (4 mol%)	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	74	
17.	C2 (5 mol%)	Indole	Iodobenzene	NaOH	DMSO	1-phenyl-1H-indole	87	

Table S4 Optimization table for N-arylation of indole to synthesize 1-phenyl-1H-indole.

^a represents the isolated yield.

8.1071 7.881 7.882 7.882 7.882 7.861 7.861 7.5518 7

Figure S3 ¹HNMR spectrum of R1 (1-phenyl-1H-benzo[d]imidazole $\{C_{13}H_{10}N_2\}$) in CDCl₃.

Figure S4 ¹³C NMR spectrum of R1 (1-phenyl-1H-benzo[d]imidazole $\{C_{13}H_{10}N_2\}$) in CDCl₃.

Figure S5 ¹H NMR spectrum of R2 (1-(p-tolyl)-1H-benzo[d]imidazole $\{C_{14}H_{12}N_2\}$) in CDCl₃.

Figure S6 ¹³C NMR spectrum of R2 (1-(p-tolyl)-1H-benzo[d]imidazole {C₁₄H₁₂N₂}) in CDCl₃.

Figure S7 ¹H NMR spectrum of R3 (1-(4-methoxyphenyl)-1H-benzo[d]imidazole $\{C_{14}H_{12}N_2O\}$) in CDCl_{3.}

Figure S8 ¹³C NMR spectrum of R3 (1-(4-methoxyphenyl)-1H-benzo[d]imidazole $\{C_{14}H_{12}N_2O\}$) in CDCl₃.

Figure S9 ¹H NMR spectrum of R4 (1-(4-nitrophenyl)-1H-benzo[d]imidazole $\{C_{13}H_9N_3O_2\}$) in CDCl₃.

Figure S10 13 C NMR spectrum of R4 (1-(4-nitrophenyl)-1H-benzo[d]imidazole {C₁₃H₉N₃O₂}) in CDCl₃.

Figure S11 ¹H NMR spectrum of R5 (1-(pyridin-2-yl)-1H-benzo[d]imidazole $\{C_{12}H_9N_3\}$) in CDCl₃.

Figure S12 13 C NMR spectrum of R5 (1-(pyridin-2-yl)-1H-benzo[d]imidazole {C₁₂H₉N₃}) in CDCl₃.

Figure S13 ¹H NMR spectrum of R6 (1-(3-nitrophenyl)-1H-benzo[d]imidazole $\{C_{13}H_9N_3O_2\}$) in CDCl₃.

Figure S14 ¹³C NMR spectrum of R6 (1-(3-nitrophenyl)-1H-benzo[d]imidazole $\{C_{13}H_9N_3O_2\}$) in CDCl₃.

Figure S15 ¹H NMR spectrum of R7 (1-(thiophen-2-yl)-1H-benzo[d]imidazole $\{C_{11}H_8N_2S\}$) in CDCl₃.

Figure S16 ^{13}C NMR spectrum of R7 (1-(thiophen-2-yl)-1H-benzo[d]imidazole {C₁₁H₈N₂S}) in CDCl₃.

Figure S17 ¹H NMR spectrum of R8 (1-phenyl-1H-indole $\{C_{14}H_{11}N\}$) in CDCl₃.

Figure S18 ¹³C NMR spectrum of R8 (1-phenyl-1H-indole $\{C_{14}H_{11}N\}$) in CDCl₃.

Figure S19 ¹H NMR spectrum of **R9** (1-(p-tolyl)-1H-indole $\{C_{15}H_{13}N\}$) in CDCl₃.

Figure S20 13 C NMR spectrum of R9 (1-(p-tolyl)-1H-indole {C₁₅H₁₃N}) in CDCl₃.

Figure S21 ¹H NMR spectrum of R10 (1-(4-methoxyphenyl)-1H-indole {C₁₅H₁₃NO}) in CDCl₃.

Figure S22 13 C NMR spectrum of R10 (1-(4-methoxyphenyl)-1H-indole {C₁₅H₁₃NO}) in CDCl₃.

Figure S23 ¹H NMR spectrum of R11 (1-(4-nitrophenyl)-1H-indole $\{C_{14}H_{10}N_2O_2\}$) in CDCl₃.

Figure S24 ¹³C NMR spectrum of R11 (1-(4-nitrophenyl)-1H-indole $\{C_{14}H_{10}N_2O_2\}$) in CDCl₃.

Figure S25 ¹H NMR spectrum of R12 (1-(3-nitrophenyl)-1H-indole $\{C_{14}H_{10}N_2O_2\}$) in CDCl₃.

Figure S26 ¹³C NMR spectrum of R12 (1-(3-nitrophenyl)-1H-indole $\{C_{14}H_{10}N_2O_2\}$) in CDCl₃.

Figure S27 ¹H NMR spectrum of R13 (1-(naphthalen-1-yl)-1H-indole $\{C_{18}H_{13}N\}$) in CDCl₃.

Figure S28 ¹³C NMR spectrum of R13 (1-(naphthalen-1-yl)-1H-indole $\{C_{18}H_{13}N\}$) in CDCl₃.

Figure S30. The XPS spectra of the 2p level of copper and deconvolution peaks of the Cu species: deconvoluted (red), Cu(I) (olive and navy blue), Cu(III) (pink and dark yellow), (a) precatalyst Cu(I) and (b) precatalyst Cu(I) after treatment with NaOH, benzimidazole and iodobenzene in DMSO at 110 °C after 30 min.