Electronic Supplementary Information (ESI†)

A new red fluorescent probe based on the rosamine-phenothiazine for highly selective and rapid detection of hypochlorite and its bioimaging in live cells

Yun Zhao^a*, Yuanyuan Xue^b, Juanjuan Sun^a, Hongli Xuan^a, Yunli Xu^a, Yapeng Cui^a, and Jinlong Dong^a

E-mail address: zhaoyun19830317@163.com; yunzhao@tynu.edu.cn;

^a Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China.

^b Shanxi Analytical Science Academy, Shanxi, Taiyuan 030006, China.

^{*}Corresponding author. Tel./Fax.: +86 351 2886580;

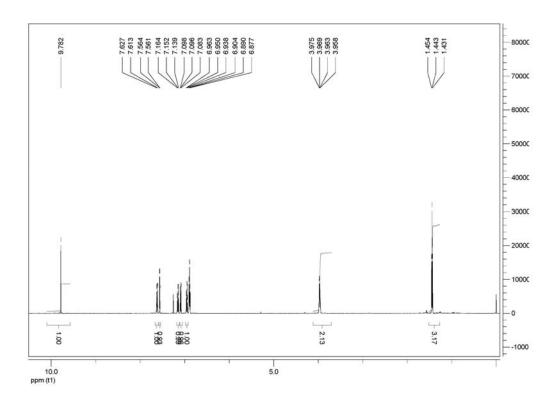
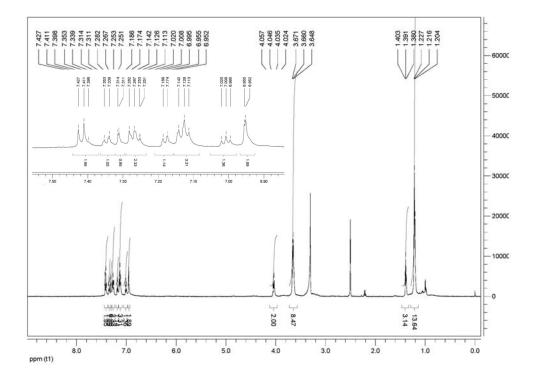
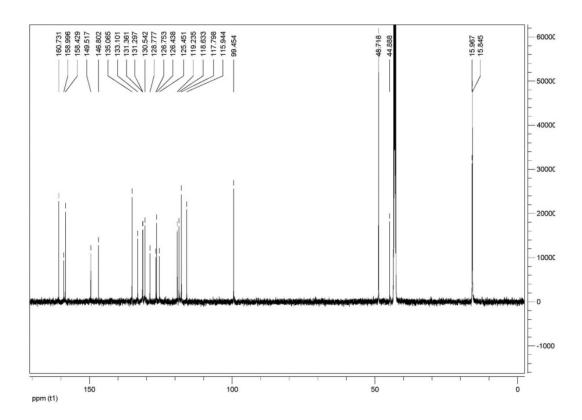
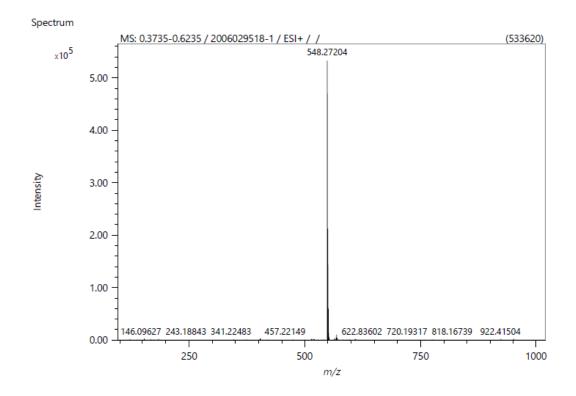
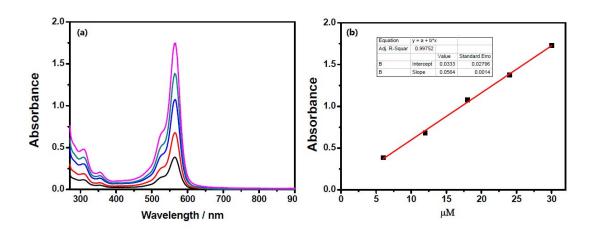
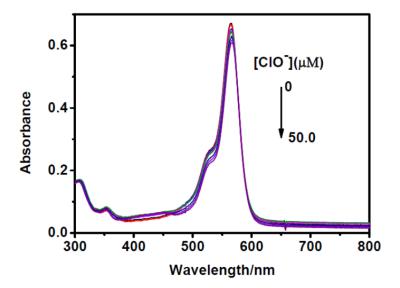




Fig. S1 ¹H NMR chart of compound M1 (CDCl₃, 600 MHz).

Fig. S2 ¹H NMR chart of compound **RClO** (CDCl₃, 600 MHz).

Fig. S3 ¹³C NMR chart of compound **RCIO** (CDCl₃, 150 MHz).

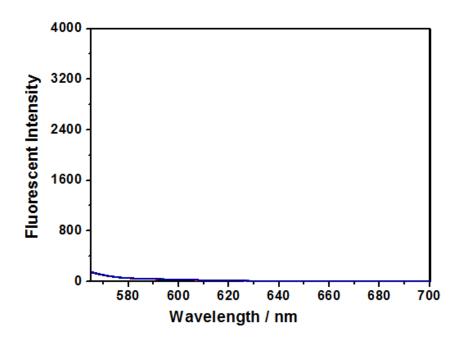
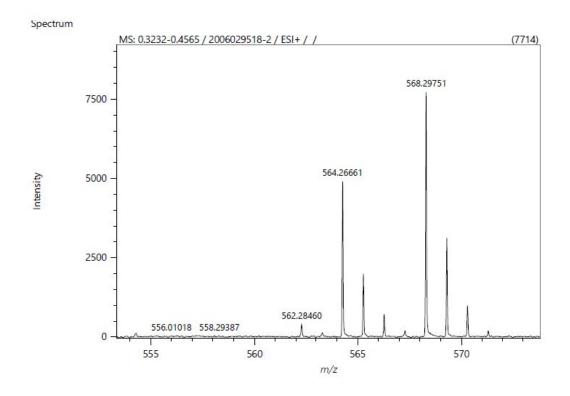

Fig. S4 HRMS chart of compound RCIO.

Fig. S5 The solubility of probe **RCIO**. (a) Absorption spectra of the probe **RCIO** in PB buffer solution (pH 7.4, containing 20 % DMF as a co-solvent) and (b) plot of Absorbance against probe **RCIO** concentration 6-36 μM in PBS buffer solution.

Fig. S6 Absorption respones of the probe **RCIO** (12 μ M) in the presence of ClO⁻ (0–50.0 μ M) in PB buffer (pH 7.4, 20 mM, containing 20% DMF).

Fig. S7. Time-dependent fluorescence spectra of probe **RCIO** (12 μ M) excited at 560 nm in PB buffer (pH 7.4, 20 mM, containing 20% DMF). Time scale: 0–30 min. Ex/Em Slit: 5.0 nm, MT Voltage: 600 V



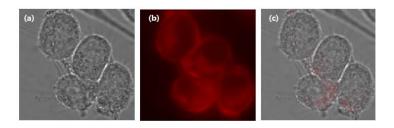


Fig. S8 HRMS charts of probe RCIO upon treatment with ClO⁻.

Fig. S9 Cell viability of HepG2 cells after treated with different concentrations of probe **RCIO** for 12 h. Cell viability was assayed by the MTT method (values: mean \pm standard deviation).

Fig. S10 Fluorescence images were obtained in a EVOS FL Auto imaging system. (a) Bright field image of the HepG2 cells; (b) HepG2 cells were pretreated with probe **RCIO** ($12\mu M$) for 30 min and subsequently treated with ClO⁻ ($25\mu M$) for another 30 min; (c) overlay of (a) and (b) in bright field image;

Table S1. Comparison of probe **RCIO** for the detection of CIO⁻

Reference	Response time	Detection limit	Probe structure
Chem.	5 min	17.9nM	N
Commun.,			S
$2015^{[1]}$			
			l

Sens. Actuators B: Chem., 2016 [2]	30min	500nM	OH OH OH OH
Sensors and Actuators B, 2018 ^[3]		720nM	NC CN
Dyes Pigments, 2016 ^[4]	1min	93nM	NH ₂ HN F F CI
This work	20s	17.8 nM	PBS buffer (pH 7.4, 20 mM, 20% DMF

- [1] Xiao H, Xin K, Dou H, Yin G, Quan Y, Wang R. A fast-responsive mitochondria-targeted fluorescent probe detecting endogenous hypochlorite in living RAW 264.7 cells and nude mouse. Chemical Communications 2015;51:1442-1445.
- [2] Jin X, Jia Y, Chen W, Chui P, Yang Z, A reaction-based fluorescent probe for rapid detection of hypochlorite in tap water, serum, and living cells, Sens. Actuators B: Chem. 232 (2016) 300-305.
- [3] Deng B B, Ren M G, Kong X Q, Zhou K, Lin W Y. Development of an enhanced turn-on fluorescent HOCl probe with a large Stokes shift and its use for imaging

HOCl in cells and zebrafish. Sensors and Actuators B-Chemical 2018;255:963-969.

[4] Cheng T, Zhao J, Wang Z, An J, Xu Y, Qian X, Liu G, A highly sensitive and selective hypochlorite fluorescent probe based on oxidation of hydrazine via free radical mechanism, Dyes Pigments 126 (2016) 218-223

Table S2. Repeatability and reproducibility of probe **RCIO** sensing ClO⁻ in 20 mM potassium phosphate buffer / DMF (1:1 v/v, pH 7.4) at room temperature.

Sample	ClO¯spiked (μM)	S_R	RSD _R (%)
S1	10	23.5	2.86
S2	20	25.5	1.39
S3	30	52.8	1.89
S4	40	28.9	0.79
S5	50	57.8	1.48

Number of independent measurements per sample: n=3; S_R : reproducibility standard deviation; RSD_R (%): reproducibility relative standard deviation.

Determination of relative standard deviation (RSD): The RSD were calculated based on the following equations.

$$\bar{X} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

$$RSD = \frac{S}{\bar{x}} \times 100\%$$

Where $x_1, ..., x_n$ are measured values of the sample items; \bar{x} is the mean value of these measurements; n is the total number of measurements; i is the number of measurement; s is the standard deviation.