Electronic Supplementary Information:

ALGINATE BEADS CONTAINING LAYERED DOUBLE HYDROXIDE INTERCALATED WITH BORATE: A POTENTIAL SLOW-RELEASE BORON FERTILIZER FOR APPLICATION IN SANDY SOILS

Gustavo Franco de Castro,*a Lincoln Zotarelli,b Edson Marcio Mattiello,a and Jairo Tronto*c

a Federal University of Viçosa, Department of Soil, Viçosa - MG, Brazil. E-mail: gustavofcastro@ymail.com; mattieloem@gmail.com.

b University of Florida, Horticultural Sciences Department, 1241 Fifield Hall, Gainesville - FL, United States of America. E-mail: lzota@ufl.edu.

c Federal University of Viçosa, Institute of Exact and Technological Sciences, Rio Paranaíba - MG, Brazil. E-mail: jairotronto@ufv.br.

*Corresponding author:

Gustavo Franco de Castro; Phone: +51 (31)998286683; E-mail address: gustavofcastro@ymail.com;

Jairo Tronto; Phone: +51 (34)999474119; E-mail address: jairotronto@ufv.br.
Table S1: Chemical characterization of the irrigation water collected in Hastings Agricultural Extension Center research farm located in Hastings, FL, U.S.

<table>
<thead>
<tr>
<th>Element</th>
<th>Level</th>
<th>Element</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate (mg L⁻¹)</td>
<td>0.28</td>
<td>Iron (mg L⁻¹)</td>
<td>0.05</td>
</tr>
<tr>
<td>Phosphorus (mg L⁻¹)</td>
<td>0.04</td>
<td>Manganese (mg L⁻¹)</td>
<td>0.01</td>
</tr>
<tr>
<td>Potassium (mg L⁻¹)</td>
<td>2.8</td>
<td>Sulfate (mg L⁻¹)</td>
<td>0.02</td>
</tr>
<tr>
<td>Magnesium (mg L⁻¹)</td>
<td>12.4</td>
<td>pH</td>
<td>8</td>
</tr>
<tr>
<td>Calcium (mg L⁻¹)</td>
<td>96.47</td>
<td>Chloride (mg L⁻¹)</td>
<td>23</td>
</tr>
<tr>
<td>Sodium (mg L⁻¹)</td>
<td>15.27</td>
<td>Carbonate (mg L⁻¹)</td>
<td>48</td>
</tr>
<tr>
<td>Boron (mg L⁻¹)</td>
<td>0.12</td>
<td>Bicarbonate (mg L⁻¹)</td>
<td>448.35</td>
</tr>
</tbody>
</table>

Total concentration of nitrogen (N) in the LDH-B-ALG and BA-ALG fertilizers:

LDH-B-ALG and BA-ALG presented a low fraction of N in their compositions. Nitrogen is a macronutrient required in relatively large amounts, and it is directly related to plant growth and development. The total N concentration was 15.0 g kg⁻¹ in LDH-B-ALG (1.50% of N) and 6.0 g kg⁻¹ in BA-ALG (0.60% of N). In the present study, the total N applied from LDH-B-ALG and BA-ALG was considered negligible.

The total amount of LDH-B-ALG and BA-ALG was calculated to supply B, considering the plant’s relatively low B requirement. The B rates applied in this study were 0, 0.5, 1.0, 3.0, and 5.0 mg dm⁻³ of B in the “Greenhouse experiment without leaching” and 2.0 mg dm⁻³ of B in the “Greenhouse experiment with leaching”. Under the highest B rate (5.0 mg dm⁻³), the total N applied as LDH-B-ALG and BA-ALG corresponded to less than 1% of the total N supplied (200 mg dm⁻³ of N as urea source) in the first and second cultivations at pre-planting and sidedress. Therefore, the contribution of N from LDH-B-ALG and BA-ALG was not considered.
Fig. S1: Shoot, root and total dry matter as a function of the applied B (H$_3$BO$_3$, BA-ALG, Ulexite, and LDH-B-ALG) in first (a, b, and c) and second (d, e, and f) cultivation. *ns* = not significant.
Cumulative Release and Leaching of Boron from Mg\textsubscript{2}Al-B-LDH, LDH-B-ALG, H\textsubscript{3}BO\textsubscript{3} and BA-ALG:

The B release test was performed and adapted from the “in vitro” release method, described by Bin Hussein and coworkers.1 A factorial 6 x 2 was established with six collection times (0, 0.5, 1, 2, 4, and 6 hours), and two B sources (LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH). The experiment was conducted in a randomized complete block design with four replicates. The water used in the boron release test was H\textsubscript{2}O deionized-Milli-Q system. Using an Erlenmeyer’s flask with 250 mL of capacity, 45 mg L-1 of total B from the B sources and 100 mL of the water were added. At pre-established times (0, 0.5, 1, 2, 4, and 6 hours), a slight agitation was performed to homogenize the solution and aliquots of 5 mL were withdrawn. Immediately afterwards, 5 mL of the water was added in order to keep the volume constant. The analyses of B concentration were performed according to the method described by López and coworkers.2

The leaching in soil columns was performed the same as described in section “2.2 Boron leaching in soil columns” of this manuscript, except for the boron sources (LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH) and incubation time (1, 5, 10, 15, 20, 25, and 30 days).

The B release and leaching tests were replicated comparing H\textsubscript{3}BO\textsubscript{3} and BA-ALG sources. The collection and incubation times was the same previously described.

The cumulative release and leaching of B from LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH are shown in Fig. S2a. In the first collection, the total B released from LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH were equivalent to 0.6% and 0.7%, respectively of the total B. After 6 hours of LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH application, 54.7% and 100% of the B were released, respectively. LDH-B-ALG presented a cumulative B release significantly lower at 2, 4, and 6 hours of collection than Mg\textsubscript{2}Al-B-LDH source. For H\textsubscript{3}BO\textsubscript{3} and BA-ALG sources (Fig S2c), the B release from BA-ALG was significantly lower at 0.5, 1, and 2 hours compared to H\textsubscript{3}BO\textsubscript{3}. The total B released (100%) from H\textsubscript{3}BO\textsubscript{3} and BA-ALG were at 2 and 4 hours of collection, respectively.

Regarding B leaching, as expected, the leachate had more quantity of B when Mg\textsubscript{2}Al-B-LDH was applied (Fig. S2b). For the first leaching collection time, 1.7% and 5.2% of the total B applied were leached from the LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH sources, respectively. At 30 days, after the LDH-B-ALG and Mg\textsubscript{2}Al-B-LDH
application, 67% and 88% of B was leached, respectively. The B leaching from LDH-B-ALG was significantly lower at 10, 15, 20, 25, and 30 days of incubation compared to Mg₂Al-B-LDH. These results showed a higher B leaching profile from Mg₂Al-B-LDH compared to LDH-B-ALG. The slow leaching profile was also confirmed for BA-ALG, in which in all incubation times the B leached was lower compared to H₃BO₃ (Fig. S2).

The results presented by LDH-B-ALG in the release and leaching of B study, suggested a lower release and leaching profile by LDH-B-ALG compared to Mg₂Al-B-LDH, showing an advantage in producing LDH-B-ALG beads compared to the Mg₂Al-B-LDH in powder form.

Fig. S2: Cumulative release (a and c) and leaching (b and d) of boron from Mg₂Al-B-LDH, LDH-B-ALG, H₃BO₃, and BA-ALG. Values followed by the same lowercase letter within each time (hours) and incubation time (days), indicate that the mean of release and leaching of B, are not significantly different at p<0.05 according to Tukey test between B fertilizer sources.
References
