Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

Electronic Supporting Information for:

A H-aggregating fluorescent probe for recognizing both mercury and

copper ions based on a dicarboxyl-pyridyl bifunctionalized

difluoroboron dipyrromethene

Hao-Ran Xie[†], Ya-Qi Gu[†], Li Liu and Jing-Cao Dai*

Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, Fujian 361021, China

† Contributed equally.

* Corresponding author, Email: <u>djc@hqu.edu.cn</u>.

Content

1.	Table S1. Some Crystal Structural Parameters for 2,6-diCO ₂ Bzl-BODIPYS1
2.	Table S2. Geometrical Parameters for 2,6-diCO ₂ Bzl-BODIPYS2
3.	Figure S1 FT-IR spectra of benzyl 2,4-dimethyl-1 <i>H</i> -pyrrole-3-carboxylateS3
4.	Figure S2 ¹ H NMR spectra of benzyl 2,4-dimethyl-1 <i>H</i> -pyrrole-3-carboxylateS3
5.	Figure S3 FT-IR spectra of 2,6-diCO ₂ Bzl-BODIPYS4
6.	Figure S4 ¹ H NMR spectra of 2,6-diCO ₂ Bzl-BODIPYS4
7.	Figure S5 ¹³ C NMR spectra of 2,6-diCO ₂ Bzl-BODIPYS4
8.	Figure S6 ESI-MS data of 2,6-diCO ₂ Bzl-BODIPYS5
9.	Figure S7 FT-IR spectra of 2,6-diCO ₂ H-BODIPYS5
10.	Figure S8 ¹ H NMR spectra of 2,6-diCO ₂ H-BODIPYS5
11.	Figure S9 ¹³ C NMR spectra of 2,6-diCO ₂ H-BODIPYS6
12.	Figure S10 ESI-MS data of 2,6-diCO ₂ H-BODIPYS6
13.	Figure S11 The ORTEP drawing and crystal packing of 2,6-diCO ₂ Bzl-BODIPYS7
14.	Figure S12 XRD of 2,6-diCO ₂ H-BODIPYS8
15.	Figure S13 TGA trace of 2,6-diCO ₂ H-BODIPYS8
16.	Figure S14 The solid state absorbance and emission spectra of 2,6-diCO ₂ H-BODIPYS9
17.	Figure S15 The absorbance and emission spectra of 2,6-diCO ₂ H-BODIPY solutionsS9
18.	Figure S16 The concentration dependent absorption & emission of 2,6-diCO ₂ H-BODIPY-S10
19.	Figure S17 Job's plot of 2,6-diCO ₂ H-BODIPY-metal ionsS10
20.	Figure S18 The photos of 2,6-diCO ₂ H-BODIPY for the Hg detection in wastewater S11
21.	Figure S19 The photos of paper-based test strip fabricated by 2,6-diCO ₂ H-BODIPY S11
22.	Figure S20 The absorbance and emission of 2,6-diCO ₂ H-BODIPY in various pH valueS12

Compound	2,6-diCO ₂ Bzl-BODIPY			
CCDC code	1484737			
empirical formula	$C_{34}H_{30}BF_2N_3O_4$			
formula weight	593.42			
<i>T</i> (°K)	293(2)			
λ (Å)	0.71073 (Mo– <i>Kα</i>)			
Crystal system, Space group, Z	Triclinic, <i>P</i> ī, 2			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.0378(7), 13.014(1),14.511(1)			
α, β, γ (°)	114.894(8), 96.065(6), 100.583(7)			
V (Å ³)	1489.5(2)			
$ \rho_{\text{calcd}} \left(\text{g} \cdot \text{cm}^3 \right) $	1.323			
$\mu (\mathrm{mm}^{-1})$	0.095			
F(000)	620			
Crystal size (mm)	0.50×0.20×0.16			
θ Range (°)	2.8 - 25.0			
Collected reflections	9721			
Unique reflections	5121			
Observed reflections	2432			
R _{int}	0.0629			
Data / restraints / parameters	5121 / 0 / 398			
GOF	1.022			
R indices (for obs.):				
R_1^{a}, wR_2^{b}	0.0707, 0.1625			
R indices (for all):				
R_1, wR_2	0.1592, 0.2124			
Largest diff. peak/hole (e.Å ⁻³)	0.29/-0.22			
$ {}^{a}\mathbf{R}_{1} = \sum(F_{o} - F_{c}) / \sum F_{o} , \mathbf{w}\mathbf{R}_{2} = \{\sum w[(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w[(F_{o}^{2})^{2}]\}^{1/2}; {}^{b}w = \{\sum w[(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w[(F_{o}^{2})^{2}]\}^{1/2}; {}^{b}w = \{\sum w[(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w[(F_{o}^{2} - F_{c}^{2})^{2}] $				
$1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, where $P = (F_o^2 + 2F_c^2)/3]$.				

TableS1. Crystal Data Collections and Structure Refinement Parameters for 2,6-diCO₂Bzl-BODIPY

Selected bond lengths and angles						
Bond leng	gths		Bond angle	S		
B-F(1)	1.376(5)	F(1)	-B-F(2)	109.2(4)		
B-F(2)	1.371(5)	F(1)	-B-N(2)	110.2(3)		
B-N(2)	1.535(5)	F(1)	-B-N(3)	110.1(4)		
B-N(3)	1.540(5)	F(2)	-B-N(2)	110.4(4)		
N(1)-C(16)	1.330(6)	F(2)	-B-N(3)	109.7(3)		
N(1)-C(20)	1.310(6)	N(2))-B-N(3)	107.2(3)		
N(2)-C(5)	1.344(5)	B-N	(2)-C(5)	125.4(3)		
N(2)-C(9)	1.398(4)	B-N	(2)-C(9)	125.9(3)		
N(3)-C(3)	1.339(5)	B-N	(3)-C(3)	125.8(3)		
N(3)-C(4)	1.395(4)	B-N	(3)-C(4)	125.5(3)		
O(1)-C(10)	1.196(5)					
O(2)-C(10)	1.309(5)					
O(3)-C(11)	1.203(5)					
O(4)-C(11)	1.323(5)					
Hydrogen bonds						
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
C(13)-H(13A)O(2)	0.96	2.25	2.912(6)	125.6		
C(13)-H(13B)F(2)	0.96	2.58	3.089(5)	113.2		
C(13)-H(13C)F(1)	0.96	2.63	3.101(5)	110.4		
C(15)-H(15A)O(3)	0.96	2.30	3.008(6)	129.6		
C(15)-H(15B)F(1)	0.96	2.60	3.067(5)	110.3		
C(17)-H(17A)O(3a)	0.93	2.58	3.419(6)	151.0		
C(19)-H(19A)F(1b)	0.93	2.51	3.289(5)	141.8		
C(34)-H(34B)O(1c)	0.97	2.64	3.495(7)	146.7		

Table S2. Geometrical Parameters for 2,6-diCO₂Bzl-BODIPY [Å and °].

Symmetry transformations used to generate equivalent atoms:

a = -x, -y+1, -z; b = -x+1, -y+1, -z; c = x-1, y-1, z-1

Figure S1 FT-IR spectra of benzyl 2,4-dimethyl-1*H*-pyrrole-3-carboxylate

Figure S2 ¹H NMR spectra of benzyl 2,4-dimethyl-1*H*-pyrrole-3-carboxylate

Figure S3 FT-IR spectra of 2,6-diCO₂Bzl-BODIPY

Figure S4¹H NMR spectra of 2,6-diCO₂Bzl-BODIPY

Figure S5 ¹³C NMR spectra of 2,6-diCO₂Bzl-BODIPY

Figure S6 ESI-MS data of 2,6-diCO₂Bzl-BODIPY

Figure S7 FT-IR spectra of 2,6-diCO₂H-BODIPY

Figure S8 ¹H NMR spectra of 2,6-diCO₂H-BODIPY

Figure S10 ESI-MS data of 2,6-diCO₂H-BODIPY

Figure S11 (*a*) The ORTEP drawing of 2,6-diCO₂Bzl-BODIPY molecule; (b) A view showing the 2,6-diCO₂Bzl-BODIPY molecules parallel packing in the chain-like supramecular aggregates with an alternating head-to-tail orientation in unit cell (righ), in which the alternating H-type to J-type packings (left) are resulted from T-shaped edge-to-face and vertex-to-face C-H... π interactions of phenyl-phenyl embraces.

Figure S13 TGA trace of 2,6-diCO₂H-BODIPY

Figure S14 The solid-state absorbance (gray) and emission (red) spectra of 2,6-diCO₂H-BODIPY

Figure S15 (*a*) The absorbance and (*b*) emission ($\lambda_{ex} = 360 \text{ nm}$) spectra of a 10 μ M solution of 2,6-diCO₂H-BODIPY in four different solvents.

Figure S16 (*a*) The absorbance and (*b*) emission ($\lambda_{ex} = 360 \text{ nm}$) spectra of 2,6-diCO₂H-BODIPY at different concentrations in v/v=1:1 MeOH/H₂O solution.

Figure S17 Job's plot of the relationship between fluorescent intensity of 2,6-diCO₂H-BODIPY probe and the addition of metal ions ranging from 0 to 2.0 eq. (top) and 0 to 10 eq. (bottom)

New Journal of Chemistry

Under the Natural Light blank (50 µM Dye) viv 1:1 Dye/H2O	v/v 1:1 Dye/W with Hg ²⁺	Vaste Water without Hg ²⁺
Under an UV lamp blank v/v 1:1 Dye/H ₂ O (50 µM Dye)	v/v 1:1 Dye/V with Hg ²⁺	Vaste Water without Hg ²⁺

Figure S18 The photos showing the naked eye visible fluorescent color changes in a 50 μ M 2,6-diCO₂H-BODIPY in v/v=1:1 MeOH/H₂O solution upon addition of isochoric distilled water, the mercury-containing subacidic wastewater (pH = ~6.2) from battery factory (metal ion pollutant: ~14 mg·L⁻¹ Hg²⁺, ~194 mg·L⁻¹ Zn²⁺, ~28 mg·L⁻¹ Mn²⁺), and the same subacidic wastewater (pH = ~6.2) from battery factory but after treatment of mercury removal (metal ion pollutant: <<~0.5 μ g·L⁻¹ Hg²⁺, ~146 mg·L⁻¹ Zn²⁺, ~25 mg·L⁻¹ Mn²⁺) after exposure on the natural light (upper) and an UV lamp (bottom, 365 nm).

Under the Natu pristine test 1 drop filter strip of paper (blank) H ₂ O	ral Light 1 drop 1 drop of of Cu ²⁺ Hg ²⁺	Under an UV lamp (365 nm) pristine test 1 drop 1 drop 1 drop filter strip of of of of paper (blank) H ₂ O Cu ²⁺ Hg ²⁺		

Figure S19 The photos of paper-based test strip containing ~0.03 Mg·cm⁻² of 2,6-diCO₂H-BODIPY, which fabricated by ~1.0×5.0 cm filter paper dipping in a 50 μ M 2,6-diCO₂H-BODIPY in v/v=1:1 MeOH/H₂O solution, showing the naked eye visible color changes after exposure by 1 drop of 10 eq. of either copper or mercury ion under the natural light (left) and an UV lamp (right, 365 nm).

New Journal of Chemistry

Figure S20 (*a*) The absorbance and (*b*) emission ($\lambda_{ex} = 360 \text{ nm}$) spectra of 2,6-diCO₂H-BODIPY (10 µM in v/v=1:1 MeOH/H₂O solution) in a pH range of 2.8-7.41. Inset shows photographs of each pH value under the natural light (upper) or an UV lamp (bottom, 365 nm).