Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

A universal laser-assistant growth of transition metal nanoparticle on flexible

graphene electrode for nonenzymatic glucose sensor

Wuyun Xie^{2,3}, Guang Yang, Mingqi Xu^{2,3}*, and Xiangjie Bo^{1,*}

¹. Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin

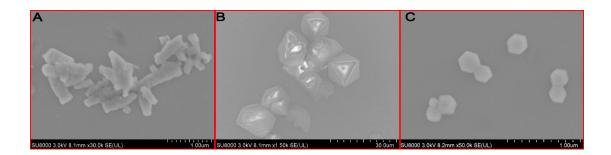
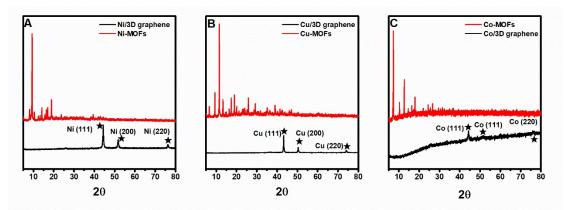
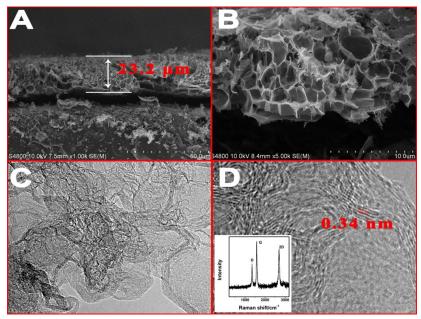
Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024,

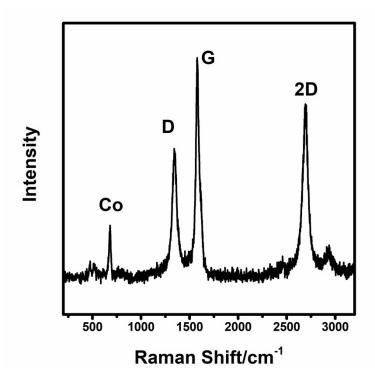
China

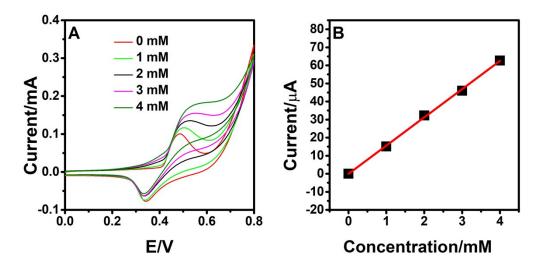
². School of Physics, Northeast Normal University, Changchun, 130024, China

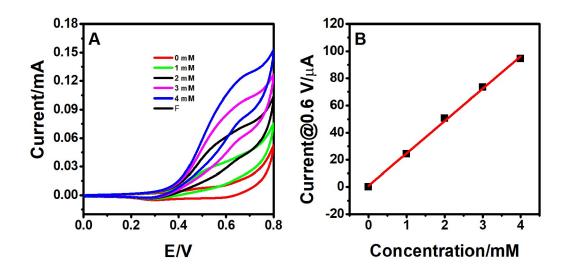
³. Jilin Province key Laboratory of the advanced energy development and the

innovative application, Changchun 130024, China


Figure S1 SEM images of Ni-MOFs, Cu-MOFs and Co-MOFs.


Figure S2 XRD patterns of (A) Ni-MOFs and their derived sample, (B) Cu-MOFs and their derived sample, (C) Co-MOFs and their derived sample.


Figure S3 (A-B) SEM images of 3D GR. (C) TEM and (D) HRTEM images of 3D GR. Inset of (D): Raman spectrum of 3D GR.

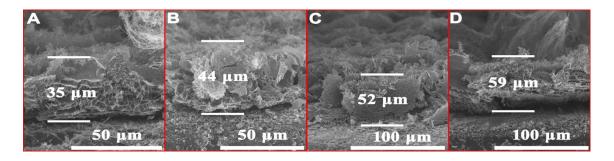

Figure S4 Raman spectrum of Co-MOFs-derived sample prepared by laser treatment of Co-MOFs on stainless steel.

Figure S5 (A) CV responses of Ni/3D GR in 0.1 M NaOH containing different glucose. (E) The calibration curve of Ni/3D GR.

Figure S6 (A) CV responses of Cu/3D GR in 0.1 M NaOH containing different glucose. (E) The calibration curve of Cu/3D GR.

Figure S7 Cross-section SEM images of Co/3D GR with the precursor concentration of (A) 5 mg mL⁻¹, (B) 10 mg mL⁻¹, (C) 15 mg mL⁻¹, and (D) 20 mg mL⁻¹

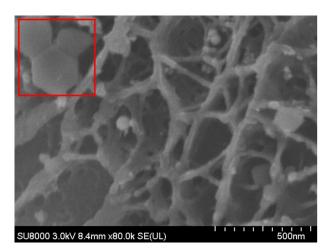
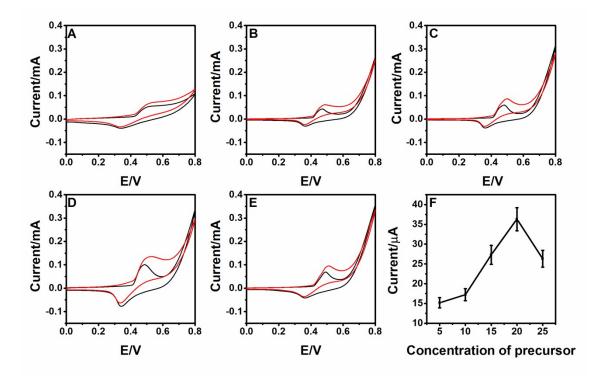
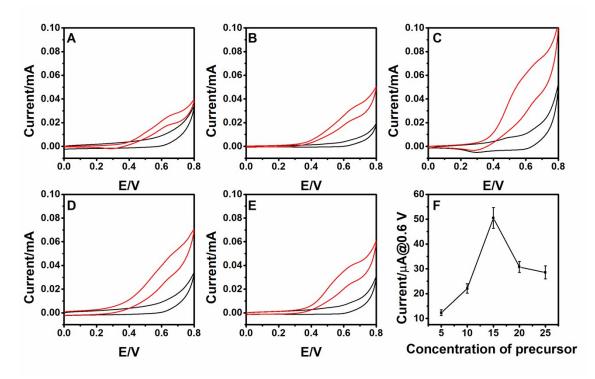




Figure S8 SEM image of Co/3D GR with the precursor concentration of 25 mg mL $^{-1}$.

Figure S9 CV responses of Ni/3D GR at precursor concentration of (A) 5 mg mL⁻¹, (B) 10 mg mL⁻¹, (C) 15 mg mL⁻¹, (D) 20 mg mL⁻¹ and (E) 25 mg mL⁻¹ in the 0 (black line) and 2 (red line) mM glucose in 0.1 M NaOH. (F) The dependence of current response on the concentration of precursor.

Figure S10 CV responses of Cu/3D GR at precursor concentration of (A) 5 mg mL⁻¹, (B) 10 mg mL⁻¹, (C) 15 mg mL⁻¹, (D) 20 mg mL⁻¹ and (E) 25 mg mL⁻¹ in the 0 (black line) and 2 (red line) mM glucose in 0.1 M NaOH. (F) The dependence of current response on the concentration of precursor.

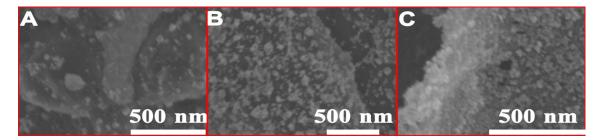


Figure S11 SEM images of Co/3D Gr at laser power of (A) 6 W, (B) 7 W and (C) 9 W.

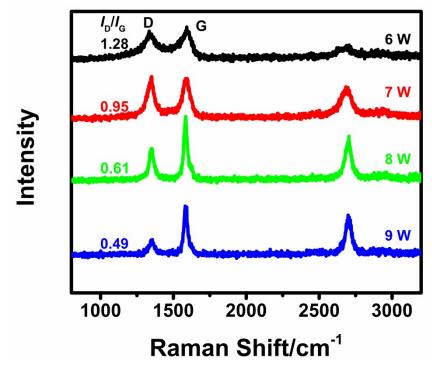
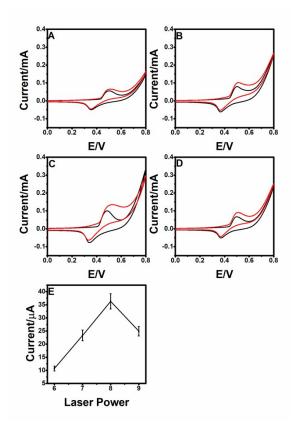
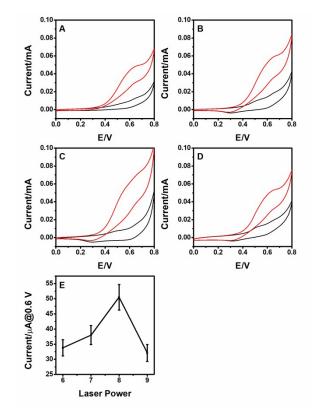




Figure S12 Raman spectra of Co/3D GR prepared at different laser power.

Figure S13 CV responses of Ni/3D GR at laser power of (A) 6 W, (B) 7 W (C) 8 W, (D) 9 W in the 0 (black line) and 2 (red line) mM glucose in 0.1 M NaOH. (E) The dependence of current response of Ni/3D GR on the laser power.

Figure S14 CV responses of Cu/3D GR at laser power of (A) 6 W, (B) 7 W (C) 8 W, (D) 9 W in the 0 (black line) and 2 (red line) mM glucose in 0.1 M NaOH. (E) The dependence of current response of Cu/3D GR on the laser power.

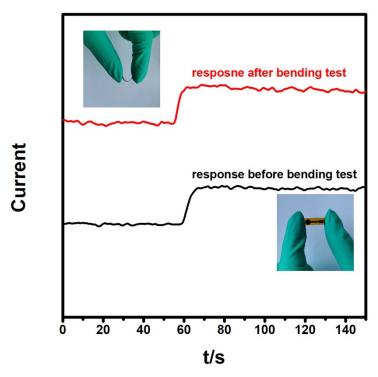


Figure S15 The electrochemical response before and after bending test.

Electrode	preparative method	Sensitivity (μA mM ⁻¹ cm ⁻²)	Linear range (µM)	LOD (µM)	Reference
GR@	In situ liquid-phase	1501.1	1-805.5	0.36	1
ZIF-67	growth/ 3h/Air	1521.1			
ZIF-N ₂ ^a	Thermal annealing/ 6h/700°C/N ₂	227	100-1100	5.69	2
CoP/Co-BP ^b	Thermal annealing/2h/ 900°C/N ₂	6427	0.5-1800	0.2	3
NiCo ₂ O ₄ HNCs/GCE°	Thermal annealing/1h/350°C/ N ₂	1306	0.18-5100	0.027	4
RGO- Co ₃ O ₄ ^d	Thermal annealing/3h/550°C/ N ₂	1315	1-500	0.4	5
Co ₃ O ₄ /NiCo ₂ O ₄ /CC ^e	Thermal annealing/2h/ 350°C/Air	12835	1-1127	0.64	6
Cuo NWs@ Co3O4	Thermal annealing/3h/ 350°C/Air	6082 μA μM ⁻¹	0.5-100	0.23	7
Ag@ZIF-67	sequential deposition- reduction/12h/80°C/Ai r	379	2-1000	0.66	8
NiCo- MOF	Thermal annealing/4h/120°C/ N ₂	684.4	1-8000	0.29	9
Co-MOF/NF ^f	Hydrothermal treatment/12h/125°C/ Air	10886	10-3000	0.001	10
3D- KSCs/ Co ₃ O ₄ g	Thermal annealing/4h/400°C/ N ₂	1377.8	88-7000	26	11
3D/GR	Laser irradiation/air/room temperature	1411.2	10-3020	2.7	This work

Table S1 Comparison of preparative method and analytical performance of Co/3D GR with other MOFs-derived sensors.

 $a \Box \quad ZIF-N_2$: pyrolysis of ZIF-67 under N_2 atmosphere.

 $b\Box$ CoP/Co-BP: buckypaper decorated with CoP/Co.

 $c \Box \quad NiCo_2O_4HNCs/GCEHNCs/GCE: NiCo_2O_4 \ hollow \ nanocages \ modified \ glass \ carbon \ electrode.$

d $\hfill\square$ ZIF-67 derived Co3O4 anchored reduced graphene oxide sheets.

 $e \Box \quad Co_3O_4 \ hollow \ nanocubes \ on \ carbon \ cloth-supported \ NiCo_2O_4 \ nanowires.$

f Co-MOF/NF: Co-MOF array on Ni foam.

 $g \Box \quad 3D\text{-}KSCs/\text{hierarchical } Co_3O_4\text{:} Three-dimensional kenaf stem-derived carbon/ hierarchical } Co_3O_4\text{:} Three-dimensional kenaf stem-derived carbon/ hierarchi$

Sample	Concentration by hospital determined by spectroscopic method (mM)	Concentration by sensor (mM)	Relative error	RSD% (n=3)
1	5.7	5.4	-5.5%	6.7
2	6.9	6.4	-7.2%	4.2
3	9.4	9.1	-3.3%	7.1

Table S2 Detection of glucose level in serum sample using Co/3D GR electrode.

Reference

S1. Chen, X.; Liu, D.; Cao, G.; Tang, Y.; Wu, C., In Situ Synthesis of a Sandwich-like Graphene@ZIF-67 Heterostructure for Highly Sensitive Nonenzymatic Glucose Sensing in Human Serums. *ACS Appl. Mater. Interfaces* **2019**, *11* (9), 9374-9384.

S2. Shi, L.; Li, Y.; Cai, X.; Zhao, H.; Lan, M., ZIF-67 derived cobalt-based nanomaterials for electrocatalysis and nonenzymatic detection of glucose: Difference between the calcination atmosphere of nitrogen and air. *J. Electroanal. Chem.* **2017**, *799*, 512-518.

S3. Hou, C.; Zhang, X.; Wang, L.; Zhang, F.; Huang, X.; Wang, Z., A buckypaper decorated with CoP/Co for nonenzymatic amperometric sensing of glucose. *Microchim. Acta* **2020**, *187* (2), 101.

S4. Feng, Y.; Xiang, D.; Qiu, Y.; Li, L.; Li, Y.; Wu, K.; Zhu, L., MOF-Derived Spinel NiCo₂O₄ Hollow Nanocages for the Construction of Non-enzymatic Electrochemical Glucose Sensor. *Electroanalysis* 2020, *32* (3), 571-580.

S5. Vilian, A. T. E.; Dinesh, B.; Rethinasabapathy, M.; Hwang, S.-K.; Jin, C.-S.; Huh, Y. S.; Han, Y.-K., Hexagonal Co₃O₄ anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. *J. Mater. Chem. A* 2018, *6* (29), 14367-14379.

S6. Guo, Q.; Zeng, W.; Liu, S.; Li, Y., In situ formation of Co₃O₄ hollow nanocubes on carbon clothsupported NiCo2O4 nanowires and their enhanced performance in non-enzymatic glucose sensing. *Nanotechnology* **2020**, *31* (26), 265501.

S7. Muthurasu, A.; Kim, H. Y., Fabrication of Hierarchically Structured MOF-Co₃O₄ on Well-aligned CuO Nanowire with an Enhanced Electrocatalytic Property. *Electroanalysis* **2019**, *31* (5), 966-974.

S8. Meng, W.; Wen, Y.; Dai, L.; He, Z.; Wang, L., A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. *Sens. Actuators, B* **2018**, *260*, 852-860.

S9. Li, W.; Lv, S.; Wang, Y.; Zhang, L.; Cui, X., Nanoporous gold induced vertically standing 2D NiCo bimetal-organic framework nanosheets for non-enzymatic glucose biosensing. *Sens. Actuators, B* **2019**, *281*, 652-658.

S10. Li, Y.; Xie, M.; Zhang, X.; Liu, Q.; Lin, D.; Xu, C.; Xie, F.; Sun, X., Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection. *Sens. Actuators, B* **2019**, *278*, 126-132.

S11. Wang, L.; Zhang, Y.; Xie, Y.; Yu, J.; Yang, H.; Miao, L.; Song, Y., Three-dimensional

macroporous carbon/hierarchical Co₃O₄ nanoclusters for nonenzymatic electrochemical glucose sensor. *Appl. Surf. Sci.* **2017**, *402*, 47-52.