Supporting Information

Increasing Heat Transfer Performance of Thermoplastic Polyurethane by Constructing Thermal Conduction Channels of Ultra-thin Boron Nitride Nanosheets and Carbon Nanotubes

Yue Ruan, a, b Nian Li, a, c Cui Liu, a, c Liqing Chen, a, b Shudong Zhang, a, c, * Zhenyang Wang a, c, *

†Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China

‡Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

#Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

*Corresponding Author

E-mail: zyw@iim.ac.cn, sdzhang@iim.ac.cn

KEYWORDS: h-BNNSs; CNTs; TPU; TIMs; multi-path; thermal conductivity
Table of Contents

Figure S1
Mechanism diagram of h-BNNSs exfoliation starting from the bulk h-BN.

Figure S2
The comparison of solubility between h-BN and h-BNNSs.

Figure S3
The comparison of Tyndall phenomenon between h-BN and h-BNNSs.

Figure S4
Morphological characteristics of h-BNNSs after exfoliation. (a) Low magnification TEM images of exfoliated h-BNNSs obtained by hydrothermal exfoliation method; (b) TEM image of the edge of h-BNNSs; (c) HRTEM image of the h-BNNSs with the clear lattice fringes; (d) A representative SAED pattern of h-BNNSs; (e) AFM topography image of h-BNNSs; (f) Cross-sectional analysis diagram of h-BNNSs.

Figure S5
Elongation at break of h-BNNSs/CNTs/TPU composites with different TPU contents. ε is elongation at break; L is the original length of the sample and ΔL is the difference between the stretched length and the original length.

Figure S6
The XRD patterns of the h-BN and h-BNNSs.

Figure S7
The XRD patterns of the CNTs before and after acidification.

Figure S8
XRD patterns of h-BNNSs, TPU, CNTs and the h-BNNSs/CNTs/TPU composite membrane.

Figure S9
FTIR spectra of h-BNNSs, CNTs, TPU and the h-BNNSs/CNTs/TPU composite membrane.

Figure S10
FTIR spectra of h-BNNSs and the h-BNNSs/CNTs/TPU composite.
Figure S11
FTIR spectra of TPU and the h-BNNSs/CNTs/TPU composite membrane.

Figure S12
FTIR spectra of CNTs before and after acidification.

Figure S13
Thermogravimetric analysis curves of h-BNNSs/CNTs/TPU composite membrane with different mass fractions of TPU.

Figure S14
Thermogravimetric analysis curves of h-BNNSs and CNTs.

Figure S15
Thermal conductivity enhancements and thermal diffusivity enhancements of h-BNNSs/CNTs/TPU composite membrane with different h-BNNS\textsubscript{x}/CNT\textsubscript{y} content ratio via transverse measurement.

Figure S16
Thermal conductivity and thermal diffusivity of h-BNNSs/CNTs/TPU composite membrane with different content ratio of h-BNNS\textsubscript{x}/CNT\textsubscript{y} by lateral measurement.
Figure S1. Mechanism diagram of h-BNNSs exfoliation starting from the bulk h-BN.

Figure S2. The comparison of solubility between h-BN and h-BNNSs.

Figure S3. The comparison of Tyndall phenomenon between h-BN and h-BNNSs.
Figure S4. Morphological characteristics of h-BNNSs after exfoliation. (a) Low magnification TEM images of exfoliated h-BNNSs obtained by hydrothermal exfoliation method; (b) TEM image of the edge of h-BNNSs; (c) HRTEM image of the h-BNNSs with the clear lattice fringes; (d) A representative SAED pattern of h-BNNSs; (e) AFM topography image of h-BNNSs; (f) Cross-sectional analysis diagram of h-BNNSs.

Figure S5. Elongation at break of h-BNNSs/CNTs/TPU composites with different TPU contents. ε is elongation at break; L is the original length of the sample and ΔL is the difference between the stretched length and the original length.
Figure S6. The XRD patterns of the h-BN and h-BNNSs.

Figure S7. The XRD patterns of the CNTs before and after acidification.

Figure S8. XRD patterns of h-BNNSs, TPU, CNTs and the h-BNNSs/CNTs/TPU
composite membrane with different h-BNNS$_x$/CNT$_y$ content ratio.

Figure S9. FTIR spectra of h-BNNSs, CNTs, TPU and the h-BNNSs/CNTs/TPU composite membrane.

Figure S10. FTIR spectra of h-BNNSs and the h-BNNSs/CNTs/TPU composite membrane.
Figure S11. FTIR spectra of TPU and the h-BNNSs/CNTs/TPU composite membrane.

Figure S12. FTIR spectra of CNTs before and after acidification.

Figure S13. Thermogravimetric analysis curves of h-BNNSs/CNTs/TPU composite membrane with different mass fractions of TPU.
Figure S14. Thermogravimetric analysis curves of h-BNNSs and CNTs.

Figure S15. Five types of h-BNNSs/CNTs/TPU composite membrane with TPU content of (a) 15 wt.%; (b) 20 wt.%; (c) 25 wt.%; (d) 30 wt.%; and (e) 35 wt.%, respectively.

Figure S16. Thermal conductivity and thermal diffusivity of h-BNNSs/CNTs/TPU composite membrane with different content ratio of h-BNNS$_X$/CNT$_Y$ by lateral
measurement.