ARTICLE

The Functionality of Tetrahedral Units in Fluoroxoiodates: Fluorine-Modulating effects in Iodates with Lone Pair Electrons

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Hao Zeng,^a Qun Jing^a and Jun Zhang*^a

Contents Table S1. The main properties of AIO_2F_2 (A = Na, K, Rb, Cs), "Band gap-cal" shows the calculated band gap results for CASTEP, and "Band gap-Exp/HSEO6" shows the experimental band gap or the result calculated by the hybrid correlation functional HSEO6. Figure S1-S3. The Structure of AIO_3 (A = Na, K, Rb) and AIO_2F_2 (A = Na, K, Rb). Figure S4-S6. The PDOS and Band-resolve of AIO_3 (A = Na, K, Rb) and AIO_2F_2 (A = Na, K, Rb). The calculated band gap and birefringence in the manuscript.

^{a.} School of Physics Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi, Xinjiang 830046, China.

ARTICLE

Table S1. The main properties of AIO₃ (A = K, Na, Rb, Cs) and AIO₂F₂ (A = K, Na, Rb, Cs), "Band gap-cal" shows the calculated band gap using CASTEP, and "Band gap-Exp/HSE06" shows the experimental band gap or the result calculated by the hybrid correlation functional HSE06 implemented in PWMAT.

Formula	NaIO ₃	KIO ₃	RbIO ₃	CsIO ₃	NaIO ₂ F ₂	$\mathrm{KIO}_2\mathrm{F}_2$	RbIO ₂ F ₂	$CsIO_2F_2$
Structure Type	CS	chiral	NCS	NCS	CS	NCS	NCS	NCS
Space Group	Pnma(62)	R3(146)	R3m(160)	R3m(160)	<i>Cmcm</i> (63)	<i>Pca</i> 2 ₁ (29)	<i>Pca</i> 2 ₁ (29)	<i>Pca</i> 2 ₁ (29)
a (Å)	5.7500(3)	8.9481(8)	6.413(2)	6.6051(10)	6.9287(10)	8.39430(4)	8.567(4)	8.781(3)
b(Å)	6.3953(3)	8.9481(8)	6.413(2)	6.6051(10)	7.2735(13)	5.97918(5)	6.151(3)	6.3771(18)
c (Å)	8.1280(4)	8.9481(8)	7.854(2)	8.087(3)	7.3503(13)	8.44680(3)	8.652(4)	8.868(3)
a (deg)	90.00	89.950(1 0)	90.00	90.00	90.00	90.00	90.00	90.00
B (deg)	90.00	89.950(1 0)	90.00	90.00	90.00	90.00	90.00	90.00
γ (deg)	90.00	89.950(1 0)	120.00	120.00	90.00	90.00	90.00	90.00
V (Å ³)	298.89	716.46	279.73	305.54	370.42	423.95	455.92	496.58
Ζ	4	8	3	3	4	4	4	4
Band gap-Cal (eV)	3.518	2.776	2.774	1.998	4.624	4.267	4.212	4.156
Band gap- Exp/HSE06 (eV)	5.0(HSE06)	4.1(HSE 06)	4.34(HSE0 6)	3.32(HSE0 6)	6.11(HSE0 6)	5.79(HSE0 6)	5.73(HSE0 6)	4.56(EXP)
Birefringence @1064 (nm)	0.215	0.069	0.058	0.180	0.241	0.031	0.021	0.045
SHG (KDP)	-	5.88	5.00	10.80		3.26	4.60	7.30

Figure S1. Structure diagram of NalO_3 (left) and $\mathsf{NalO}_2\mathsf{F}_2$ (right).

Figure S2. Structure diagram of $RbIO_3$ (left) and $NaIO_2F_2$ (right).

Figure S3. Structure diagram of KIO_3 (left) and KIO_2F_2 (right).

Journal Name

Figure S4. The PDOS of $NalO_3$ (left) and $NalO_2F_2$ (right).

Figure S5. The PDOS and band resolved SHG response of KIO₃ (left) and KIO₂F₂ (right).

4 | J. Name., 2012, 00, 1-3

Figure S6. The PDOS and band resolved SHG response of $RbIO_3$ (left) and $RbIO_2F_2$ (right).

Especially, NaIO₃ and NaIO₂F₂ are centrosymmetric structures. So, they have no second harmonic generation(SHG) effects here.

ARTICLE

Journal Name

The calculated band gap of $NalO_3$ (1) and $NalO_2F_2$ (2).

The calculated band gap of ${\rm KIO}_3$ (1) and ${\rm KIO}_2{\rm F}_2$ (2).

The calculated band gap of $RbIO_3\left(1\right)$ and $RbIO_2F_2\left(2\right).$

Journal Name

The calculated band gap of $CsIO_3$ (1) and $CsIO_2F_2$ (2).

The calculated birefringence of AIO_3 (A = Na, K, Rb, Cs).

Journal Name

The calculated birefringence of AIO_2F_2 (A = Na, K, Rb, Cs).