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Geometric information of tbBPs

Table S1: Structural information of all tbBPs. The lattice mismatch is defined by the super-
cell length along the x- and y-directions (LtBP,uBP

x,y ) as MtbBP ≡ [(LtBP
x − LuBP

x )/LtBP
x + (LtBP

y −
LuBP

y )/LtBP
y ]/2, where superscripts tBP and uBP mean twisted and untwisted BP of two constituent

monolayers, respectively.

Twisted Bilayer Black Phosphorus
Twist Angle θ = 1.8◦ θ = 2.2◦ θ = 2.7◦ θ = 3.6◦ θ = 5.4◦

Number of atoms 8068 5604 3588 2020 900
n× p 24 × 42 20 × 35 16 × 28 12 × 21 8 × 14
Supercell size (Å) 140.70 × 106.35 117.25 × 88.63 93.90 × 70.98 70.35 × 53.17 47.00 × 35.35
Lattice mismatch MtbBP 0.049 % 0.071 % 0.111 % 0.198 % 0.443 %

The geometric information of all five tbBPs are listed in Table S1, as the same as listed in
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Table 1 of the main text. The untwisted BP, which is one of the two constituent monolayer BPs, is

formed by expanding the primitive cell of BP (AA stacking) with a factor of p and n along the x

and y directions respectively. The twisted monolayer BP is formed by rotating the uBP by an angle

θ . Plus, the schematic plots of atomic structures of all five tbBP configurations are presented as

Figure S1. For more details we refer interested readers to our previous work.1

(a) (b) (c) (d) (e)

Figure S1: The schematic plots of atomic structures of twisted bilayer black phosphorus with twist
angle (a) θ = 5.4◦, (b) θ = 3.6◦, (c) θ = 2.7◦, (d) θ = 2.2◦ and (e) θ = 1.8◦.

For the detailed model constructions of supercell of tbBPs, we would like to describe it as

follow. First of all, we build a primitive cell of monolayer black phosphorus (the small black

rectangle in Figure S2, namely uBP) associated with lattice constant a and b. Once it’s done, both

directions of lattice vectors are re-oriented with angle θ and a new supercell of monolayer black

phosphorus (large red rectangle in Figure S2, namely tBP) is constructed. As a result, the twist

angle θ could be calculated by

θ = arctan
a

nb
= arctan

b
pa

(1)

after the transformation, we could have
a2

b2 =
n
p

(2)

where n and p are both integer 1, 2, 3,.... Since a2/b2 ≈ 4/7, in order to make sure that the twist

angles are small enough, the factors (n, p) are chosen as (24, 42), (20, 35), (16, 28), (12, 21), (8,

14) corresponding to twist angle θ = 1.8◦, 2.2◦, 2.7◦, 3.6◦ and 5.4◦, respectively.
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Figure S2: The illustration of supercell construction of twisted bilayer black phosphorus.

Mechanical properties of tbBPs

In this section, we summarized the calculated mechanical properties of all tbBPs, AA stacking bi-

layer BP and monolayer BP, including elastic stiffness constants, ultimate tensile stress and strain,

presented in Table S2. In addition, as an example, the schematic plot of atomic structural several

snapshots of 2.7-tbBP configuration under elastic (3.5%), plastic (10% and 12.5%) and fracture

deformation (13%, 13.5% and 14%) are shown in Figure S3.

In order to well simulate the atomic volume, we have applied the periodic boundary conditions

in both armchair and zigzag directions while the free surface boundary condition is adopted in

the out-of-plane direction. Generally, the atomic stress of each atom in the simulation system is

calculated according to the equation2

Ω
α

σ
α
i j =

1
2

mα
υ

α
i υ

α
j + ∑

β=1,n
r j

αβ
f i
αβ

(3)

where i and j denote indices in the Cartesian coordinate system; α and β are the atomic indices

while mα and υα indicate the mass and velocity of atom α; rαβ and fαβ are the distance and force

between atoms α and β , respectively; and Ωα is the atomic volume of atom α . Furthermore, we
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simulate the stress-strain by averaging the total atomic stress over the volume of the system as

∑α Ωασα
i j

V
=

∑α

(
1
2mαυα

i υα
j +∑β=1,n r j

αβ
f i
αβ

)
V

(4)

where V is the volume of the system. Here, the thickness of monolayer BP is taken as 5.24 Å3,4 in

the computation of the system volume regarding the stress-strain relations.

(a) (b) (c)

(d) (e) (f)
0 Gpa
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Figure S3: The atomic structures of 2.7-tbBP with tensile deformation of (a) 3.5%, (b) 10 %,
(c) 12.5%, (d) 13%, (e) 13.5%, and (f) 14% along x-direction. The stress distribution of atomic
configurations during fracture failure process are colour coded at right side.

Table S2: The calculated mechanical properties of all tbBPs, AA stacking bilayer BP and mono-
layer BP. The unit of elastic stiffness constants and ultimate tensile stress is GPa.ZZ and AC rep-
resent the zigzag and armchair directions, respectively.

Elastic stiffness constants Ultimate tensile stress Ultimate tensile strain
ZZ AC ZZ AC ZZ AC

1.8-tbBP 152 58 12.5 6.8 0.128 0.230
2.2-tbBP 154 58 12.5 6.7 0.130 0.233
2.7-tbBP 161 63 12.2 6.8 0.127 0.242
3.6-tbBP 158 62 13.2 7.0 0.131 0.246
5.4-tbBP 157 62 12.7 6.9 0.138 0.251

Bilayer BP (AA-stacking) 121 45 12.1 6.5 0.209 0.311
Monolayer BP 113 41 11.4 6.1 0.205 0.308
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Carrier mobility calculation of tensile deformed 3.6-tbBP

The hole carrier mobility µh along armchair direction in uniaxial tensile deformed 3.6-tbBP are

calculated by applying deformation potential theory5 with crossover function6

µ f ilm =
πeh̄4C f ilm√

2(kBT )3/2(m∗)5/2(DA)
2 ·F (5)

where F is a crossover function that bridges 2D and 3D,

F ≡ ∑n{
√

π

2 [1− erf(Ω(n)]+Ω(n)e−Ω2(n)}
∑n[1+Ω2(n)]e−Ω2(n)

(6)

and

Ω(n) ≡

√
n2π2h̄2

2m∗We f f
2kBT

.

In the crossover function F , erf is the error function, the summation over integers n is due to

quantum confinement along the z-direction (finite thickness direction) and We f f can be calculated

using the wave functions obtained by KS-DFT or analytically assuming a square-well confinement

potential. In Eq. (5), DA is the deformation potential which is defined as δEi = DAiδa/a, where

δEi is the energy change of the ith electronic band under proper cell compression and dilatation

with respect to the equilibrium cell and a is the lattice constant and δa the deformation of a. C f ilm

is related to the calculated elastic stiffness constants extracted from stress-strain relation. m∗ is the

calculated effective mass, extracted from calculated band structures along the transport (armchair)

direction. The supercell dilation or compression (e.g. deformation) proceeds by increments of 0.5

% in the subsequent KS-DFT calculations.

Here, for the hole carrier mobility calculation of uniaxial tensile deformed 3.6-tbBP, the hole

effective mass m∗h are extracted from calculated band structures of each tensile deformed atomic

configurations of 3.6-tbBP, while the deformation potential DA and elastic stiffness constants C f ilm

are adapted from the prediction of equilibrium 3.6-tbBP. The previous calculations7 denote that it

is a plausible method for preforming carrier mobility of strained materials. The calculated values
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of DA, C f ilm, m∗h and hole carrier mobility µh are presented in Table S3.

Table S3: Calculated effective mass m∗ in units of bare mass m0, elastic stiffness C f ilm in units
of GPa, deformation potential DA in units of eV and mobility µ in units of cm2V−1s−1 for the
3.6-tbBPs along the armchair (y) direction, corresponding to the Γ-Y direction in the 2D Brillouin
zone. The subscript h (hole) indicates the carrier type.

Tensile deformed direction Strain m∗h C f ilm DA µh
1 % 0.162 62 3.07 4901
2 % 0.171 4387
3 % 0.186 3703
4 % 0.201 3134

Zigazag direction 6 % 0.239 2214
8 % 0.305 1321

10 % 0.504 438
12 % 2.09 23
2 % 0.164 62 3.07 4783
4 % 0.175 4169
6 % 0.185 3611
8 % 0.194 3387

Armchair direction 10 % 0.201 3102
14 % 0.211 2814
18 % 0.216 2720
22 % 0.218 2693

24.8 % 0.220 2621

Negative Poisson’s ratio in tbBPs

The effect of in-plane negative Poisson’s ratio (NPR), where transverse direction extend as longi-

tudinal tensile loading is applied, is demonstrated in tbBPs. Here, the Poisson’s ratio is calculated

by its definition

ν =
εr

εa
(7)

where εa is applied tensile strain along one direction and εa is the resultant strain along the other

direction. The corresponding results of NPR are plotted in Figure S4. The effect of NPR is discov-

ered during armchair tensile deformation in 3.6-tbBP, as indicated in Figure S4(c) and the same
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observations are also presented in all five tbBPs, as shown in Figure S4(d). The NPR is demon-

strated as the armchair tensile strain up to 0.20 ∼ 0.22 for all tbBPs. The origin of this effect

could be mostly understood from two aspects: First, due to the coexistence of four high-symmetry

stacking configurations in tbBPs, the corrugation perpendicular to 2D plane is constructed in equi-

librium tbBPs and it undergoes a de-wrinkling process so as to assume a more planar conformation

resulting in an in-plane NPR, which is the ’wrinkled paper model’. Second, the geometric puck-

ered structures and coupled hinge-like bonding configurations in few-layer BP could result in this

phenomenon, which has been investigated in previous work.8–11
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Figure S4: The schematic plot of 3.6-tbBP (10 times replication of supercell along x and y direc-
tion) with (a) no deformation and (b) 0.25 armchair tensile deformation (y-direction). The scale
in resultant zigzag direction (x-direction) is 706.4 Åwith 0.25 armchair tensile deformation, larger
than 703.5 Åwith no deformation, indicating the effect of NPR. (c) The Poisson’s ration as a func-
tion of armchair (AC) and zigzag (ZZ) tensile strain in 3.6-tbBP. (d) The Poisson’s ration as a
function of zigzag (ZZ) tensile strain in all five tbBPs.
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