Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Highly Active Fe-N-doped Porous Hollow Carbon Nanospheres as Oxygen Reduction Electrocatalysts in Both Acidic and Alkaline Media

Meng-geng Hao, a,b Rong-min Dun, Vu-miao Su and Wen-mu Li*a

^b University of Chinese Academy of Sciences, Beijing 100049, China E-mail: liwm@fjirsm.ac.cn

Figure S1 (a) XRD pattern of MF-C-Fe-Phen-700, MF-C-Fe-Phen-800, MF-C-Fe-Phen-900. (b) Raman spectra of MF-C-Fe-Phen-700, MF-C-Fe-Phen-800, MF-C-Fe-Phen-900. (c) Nitrogen adsorption-desorption isotherms of MF-C-Fe-Phen-700, MF-C-Fe-Phen-800 and MF-C-Fe-Phen-900. (d) The corresponding pore size distributions were calculated by Nonlocal Density Functional Theory (DFT) method.

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Figure S2 (a) XPS survey spectra of MF-C-Fe-Phen-700, MF-C-Fe-Phen-800, MF-C-Fe-Phen-900. (b) The corresponding high-resolution XPS spectra of N1s. (c) The atomic contents of different nitrogen types in the MF-C-Fe-Phen-700, MF-C-Fe-Phen-800 and MF-C-Fe-Phen-900 obtained from the deconvoluted N1s peaks. (d) High-resolution XPS spectra of Fe 2p for MF-C-Fe-Phen-800.

Figure S3 (a) CV curves of MF-C-Fe-Phen-x (x=700, 800, 900) in O₂ or N₂-saturated 0.1 M HClO₄ solution at a scan rate of 10 mV s⁻¹. (b) Rotating ring disk electrode (RRDE) curves for MF-C-Fe-Phen-x (x=700, 800, 900) in O₂-saturated 0.1 M HClO₄ solution at a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm. (c) The corresponding peroxide yield and electron transfer number in O₂-saturated 0.1 M HClO₄ solution at various potentials based on the RRED dates.

Figure S4 LSV curves of MF-C-Fe(x%)-Phen-800 (x%=1%, 3%, 4%, 5%, 6%) in O₂-saturated at a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm in 0.1 M HClO₄ (a) and 0.1 M KOH solution (b).

Figure S5 (a) CV curves of MF-C-Fe-Phen-x (x=700, 800, 900) in O₂ or N₂-saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹. (b) Rotating ring disk electrode (RRDE) curves for MF-C-Fe-Phen-x (x=700, 800, 900) in O₂-saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm. (c) The corresponding peroxide yield and electron transfer number in O₂-saturated 0.1 M KOH solution at various potentials based on the RRED dates. (d) RRDE curves for MF-C, MF-Fe, MF-Fe-Phen, C-Fe-Phen, MF-C-Fe-Phen-800 and Pt/C in O₂-saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Figure S6 LSV curves in O₂-saturated 0.1 M KOH solution at a different rotation rate from 400 to 2025 rpm, the inset shows the K-L plots at the potential range of 0.3 to 0.7 V for (a) MF-C. (b) MF-Fe. (c) MF-Fe-Phen. (d) C-Fe-Phen. (e) Pt/C. (g) MF-C-Fe-Phen-700. (h) MF-C-Fe-Phen-900. (f) The K-L plots at the potential of 0.6 V (vs. RHE) for MF-C, MF-Fe, MF-Fe-Phen, C-Fe-Phen, MF-C-Fe-Phen-800 and Pt/C. and the corresponding electron transfer number calculated by the K-L equation. (i) Transferred electron number of MF-C-Fe-Phen-700, MF-C-Fe-Phen-800, MF-C-Fe-Phen-900 at the potential range of 0.3 to 0.7 V calculated by the K-L equation.

Table S1 Textural properties of MF-C, MF-Fe, MF-Fe-Phen, C-Fe-Phen, MF-C-Fe-Phen-700, MF-C-Fe-Phen-800 and MF-C-Fe-Phen-900

Sample	S ^a _{BET}	S ^b micro	S _{meso}	V c total	V d micro	V meso	Pore size ^e (nm)	
	(m²/g)	(m²/g)	(m²/g)	(cm³/g)	(cm³/g)	(cm ³ /g)	Micro ^f (nm)	D _{av} ^g (nm)
MF-C	1455.31	501.83	953.48	2.2006	0.2533	1.9473	0.631	6.05
MF-Fe	231.09	29.61	201.48	0.4959	0.0135	0.4824	0.632	8.58
MF-Fe-Phen	517.84	96.94	420.9	0.6955	0.0446	0.6509	0.612	5.37
C-Fe-Phen	818.87	452.27	366.6	1.3769	0.2328	1.1441	0.582	6.73
MF-C-Fe-Phen-700	480.87	321.41	159.46	0.4699	0.1582	0.3117	0.562	3.91
MF-C-Fe-Phen-800	807.24	434.34	372.9	0.6424	0.2210	0.4214	0.580	3.18
MF-C-Fe-Phen-900	952.28	387.38	564.9	0.7239	0.1959	0.528	0.615	3.04

^a Surface area determined by the BET method.

- ^b Micropore surface area determined by t-Plot micropore area.
- ^c Total pore volume calculated by the DFT method.
- ^d Micropore volume determined by t-Plot micropore volume.
- ^e the pore distribution curves determined by the DFT method.
- ^f Micropore width determined by the HK method.
- ^g Average pore width determined by Adsorption average pore width (4V/A by BET)

Table S2 Elemental compositions of MF-C, MF-Fe, MF-Fe-Phen, C-Fe-Phen, MF-C-Fe-Phen-700, MF-C-Fe-Phen-800 and MF-C-Fe-Phen-900 determined by the XPS analysis.

Samples	C (at. %)	N (at. %)	O (at. %)	Fe (at. %)
MF-C	78.18	1.03	20.79	-
MF-Fe	92.00	1.95	5.48	0.58
MF-Fe-Phen	92.46	2.53	4.50	0.51
C-Fe-Phen	92.61	2.21	4.79	0.39
MF-C-Fe-Phen-700	82.83	2.59	14.19	0.39
MF-C-Fe-Phen-800	89.32	3.28	6.90	0.50
MF-C-Fe-Phen-900	91.13	1.61	6.84	0.42