SYNTHETIC FACTORS AFFECTING THE STABILITY OF METHYLAMMONIUM LEAD HALIDE PEROVSKITE NANOCRYSTAL DISPERSIONS PRODUCED BY LIGAND-ASSISTED REPRECIPITATION

ELECTRONIC SUPPORTING INFORMATION

Barry McKenna,[†] Abhinav Shivkumar[†], Bethan Charles[‡] and Rachel C. Evans[‡]*

[†] School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.

[‡] Department of Materials Science & Metallurgy, University of Cambridge, U.K.

E-mail: rce26@cam.ac.uk

1.	SAMPLE COMPOSITION	2
2.	ANALYSIS OF SIZE AND COMPOSITION	3
3.	PHOTOLUMINESCENCE PROPERTIES	4
4.	EFFECT OF DILUTION	5
5.	EFFECT OF CAPPING LIGAND CONCENTRATION	6
6.	EFFECT OF HALIDE RATIO	5

1. Sample composition

Table S1. Summary of the synthetic reagents used for the fabrication of MAPbBr_{3-x}I_x PNC precursor solutions. OY samples indicate variation of the oleylamine capping ligand concentration, R samples indicate variation of the halide ratio and/or halide source and S samples indicate variation of the antisolvent.

Sample ID	PbBr ₂ (mmol)	Pbl ₂ (mmol)	MAI (mmol)	MABr (mmol)	OY (mmol)	OA (mmol)	Ratio (Br:l⁻)	Solvent
OY ₅₀	0.2		0.16	· · ·	0.15	1.6	2:0.8	Toluene
OY ₆₀	0.2		0.16		0.18	1.6	2:0.8	Toluene
OY ₇₀	0.2		0.16		0.21	1.6	2:0.8	Toluene
OY ₈₀	0.2		0.16		0.24	1.6	2:0.8	Toluene
OY ₉₀	0.2		0.16		0.27	1.6	2:0.8	Toluene
OY ₁₀₀	0.2		0.16		0.30	1.6	2:0.8	Toluene
R ₁	0.13	0.7	0.056	0.104	0.15	1.6	2:1.1	Toluene
R ₂	0.13	0.7	0.07	0.13	0.15	1.6	2:1.1	Toluene
R ₃	0.1	0.1		0.16	0.15	1.6	2:1.1	Toluene
R4	0.1	0.1		0.2	0.15	1.6	2:1	Toluene
R₅		0.2		0.16	0.15	1.6	0.8:2	Toluene
R ₆	0.1	0.1	0.08	0.08	0.15	1.6	1:1	Toluene
R ₇	0.2		0.08	0.08	0.15	1.6	5:1	Toluene
S ₁	0.2		0.16		0.15	1.6	2:0.8	CHCl₃

MAI = methyl ammonium iodide, MABr = methyl ammonium bromide, OY = oleyl amine, OA = oleic acid.

2. Analysis of size and composition

Figure S1. Compositional analysis of the parent solution of a standard MAPbBr_{3-x}I_x PNC sample by STEM. (a) and (b) STEM images of PNCs under different magnification. The red box in (b) represents the area investigated by EDX. (b) Corresponding EDX spectrum indicating the absence of iodide in the MAPbBr_{3-x}I_x PNC sample at the detection limits of the technique.

Figure S2. Dynamic light scattering size-intensity distribution plot for MAPbBr_{3-x}l_x PNCs in toluene (standard sample). The mean hydrodynamic diameter is *ca.* 14 nm.

3. Photoluminescence properties

Figure S3. Emission decay curves, biexponential fits (solid lines) and instrument response function (IRF, blue triangles) for a standard MAPbBr_{3-x}I_x PNC dispersion in toluene upon excitation at 458 nm, before (black squares, λ_{em} = 525 nm) and after dilution D₂₀ (red circles, λ_{em} = 560 nm). For each fit the residuals are also shown.

Table S2. Photoluminescence properties of standard MAPbBr_{3-x}I_x PNC dispersions before and after dilution. Lifetimes (τ), pre-exponential amplitudes (A), and chi-squared (χ^2) values obtained from bi-exponential fits to the emission decays of parent ($\lambda_{em} = 525$) and dilute (D₂₀) ($\lambda_{em} = 560 \text{ nm}$) samples. $\lambda_{ex} = 400 \text{ nm}$.

	τ ₁ (ns)	τ ₂ (ns)	A ₁	A ₂	χ²	PLQY (%)
Parent	10.7 ± 0.1	24.2 ± 0.2	0.66 ± 0.02	0.34 ± 0.01	1.14	54 ± 4
D ₂₀	12.4 ± 0.2	28.8 ± 0.2	0.72 ± 0.01	0.28 ± 0.01	1.2	10 ± 0.5

4. Effect of dilution

Figure S4. Compositional analysis of a dilute dispersion of MAPbBr_{3-x}I_x PNCs by STEM (dilution factor, D_{20}). (a) STEM image of large population of the sample; the red box represents the area investigated by EDX. (b) Corresponding EDX spectrum.

5. Effect of halide ratio

Figure S5. Photoluminescence spectra of standard (Br⁻:I⁻ = 2:0.8, black line) and stoichiometric (Br⁻:I⁻ = 2:1, red line) MAPbBr_{3-x}I_x PNCs before (a) and after (b) dilution by a factor D₂₀. λ_{ex} = 400 nm.

Figure S6. Photoluminescence spectra of MAPbBr_{3-x}I_x PNCs prepared with excess bromide (R₇, Br⁻:I⁻ = 5:1) before and after dilution by a factor D₂₀. λ_{ex} = 400 nm.

6. Effect of capping ligand concentration

Figure S7. (a) Photographs of MAPbBr_{3-x}I_x PNC dispersions synthesised with different oleylamine (OY) capping ligand volumes. Photoluminescence spectra of (b) parent PNC dispersions and (c) diluted dispersions (D₂₀). λ_{ex} = 400 nm.

Figure S8. Photoluminescence spectra of OY₁₀₀ MAPbBr_{3-x}I_x PNCs upon dilution by a factor D20 after 0 hours, 24 hours and 48 hours. λ_{ex} = 400 nm.