Supporting Information

Nanopaper-based screen-printed electrode: A hybrid sensing bioplatform for dual opto-electrochemical sensing applications

Hadi Eynaki, Mohammad Ali Kiani, Hamed Golmohammadi
Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran

* Corresponding authors: Mohammad Ali Kiani, Hamed Golmohammadi
Email: makiani@ccerci.ac.ir
golmohammadi@ccerci.ac.ir
The assembly and setup of photometer

The assembled photometer, as schematically shown in Figure S2-A, consists of a far-red light power LED (Epileds, Taiwan, with λ=710 nm, light intensity 80-90 Lm, 3.0-3.4 V, and maximum electric current 350 mA) as light source; a silicon photodiode (Hamamatsu S1223-01 full spectrum Si photodiode, through-hole TO-5, Japan) as detector; a converging lens with 20 mm focal length and a collimator lens with D 25.4 mm (Changchun Yutai Optics Co., Ltd. China), which were used to focus the light on the detection zone and silicon photodiode, respectively; an ADC (analog to digital converter) AVR® 8-bit ATMega32 microcontroller (Silicon TechnoLabs, India); an electronic board; a pre-processing signal module; and USB module for connecting to the computer. A data software was also written in C sharp to control the LED-based photometer through a USB interface and for data acquisition. A sandwich-structured electrode holder with a three-pin connector was designed, as shown in Figure S2-B and 2C, which fixes the fabricated BC-SPE platform by Plexiglass (Poly(methyl methacrylate)) electrode holders during opto-electrochemical experiments. A photograph of the assembled photometer with the designed electrode holder is also displayed in Figure S2- D.

Depending on the target analyte and consequently the required wavelength, the LED light source can be changed. Changing in absorbance (ΔA) of the BC-SPE platform is monitored by using the assembled photometer for quantitative optical detection of analytes, and at the same time, the electrochemical modulation can be recorded by using a potentiostat, which is connected via the three-pin connector to the fabricated BC-SPE for electrochemical detection.
Figure S1 Contact angle images for droplets water on (A) BC nanopaper (non-printed), and (B) printed BC nanopaper. Contact Angle: CA

Figure S2 (A) Cross-section representation of LED-based photometer assembly. (B) A picture of the fabricated sandwich-structured electrode holder with a three-pin connector. (C) A photograph showing the sample casting on the BC-SPE fixed inside the fabricated electrode holder. (D) A photograph of the assembled LED-based photometer with the electrode holder.
Figure S3 (A) CV of K₃Fe(CN)₆ (10 mM)/KCl (0.1 M) at a scan rate of 50 mV/s on the surface of the BC-SPE platform. (B) Cyclic voltammetry measurements of K₃Fe(CN)₆ (10 mM)/ KCl (0.1 M) on the surface of the fabricated BC-SPE platforms at various scan rates: a) 25, b) 50, c) 75, d) 100, e) 150 mV/s. (C) Plots of \(i_{pc} \) vs. \(\nu^{1/2} \) and \(i_{pa} \) vs. \(\nu^{1/2} \) for K₃[Fe(CN)]₆ on the surface of the fabricated BC-SPE platforms.

Figure S4 (A) CVs of fresh aqueous solution (10 mM K₃Fe(CN)₆ + 2 mM FeCl₃ + 0.1 M KCl + 10 mM HCl) on the surface of the BC-SPE in the potential range of -300–1000 mV, at a scan rate of 50 mV/s. (B) Absorbance at 710 nm (LED source) vs number of CV scans (Inset shows the variation of color during application of CV cycles).
Figure S5 (A) Schematic mechanism for acetaminophen sensing using the developed BC-SPE through synthesis of PB. (B) CVs of solutions (K$_3$Fe(CN)$_6$ (10 mM)/ KCl (0.1 M), in the absence (blue) and presence (red) of 30 µM acetaminophen casted on the opto-electrochemical window of the developed BC-SPE platform, at a scan rate of 50 mV/s. (C) CVs of solutions (K$_3$Fe(CN)$_6$ (10 mM)/ FeCl$_3$ (10 mM)/ KCl (0.1 mM), and different concentrations of acetaminophen (10-100 µM)) casted on the opto-electrochemical window of the developed BC-SPE platform, at a scan rate of 50 mV/s.
Figure S6 A photograph of the fabricated dark chamber for ECL image capturing on BC-SPE.