Supporting Information for Two-dimensional stable Mn based half metal and antiferromagnets promising for spintronics

Bingwen Zhang,^{*,†} Guang song,[‡] Jie Sun,[¶] Jiancai Leng,[¶] Cheng Zhang,[†] and Jun Wang^{*,†}

†Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, P. R. China

[‡]Department of Physics, Huaiyin Institute of Technology, Huaian 223003, P. R. China

¶School of Electronic and Information Engineering (Department of Physics), Qilu

University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, P. R.

China

E-mail: turney0524@163.com; wjnaf@163.com

Abstract

This supporting information includes bond-length revolution along with time steps of AIMD at 300 K of both $MnC_{0.5}Si_{0.5}$ monolayer and bilayer MnSi nanosheet; electronic projection band structures of Hubbard $U_{eff} = 4 \text{ eV}$ of both MnSi and $MnC_{0.5}Si_{0.5}$ monolayer; structure search of monolayer MnSi and $MnC_{0.5}Si_{0.5}$ as well as bilayer MnSi nanosheets; electronic band structures of Hubbard $U_{eff} = 3 \text{ eV}$ and $U_{eff} = 5 \text{ eV}$ of both MnSi and $MnC_{0.5}Si_{0.5}$ monolayer; phonon band structure of bilayer $MnC_{0.5}Si_{0.5}$ nanosheet; different magnetic states of bilayer MnSi nanosheet, electronic band structure of Hubbard $U_{eff} = 4 \text{ eV}$ and Monte Carlo simulation of bilayer MnSi nanosheet.

Figure S1: The bond-length revolution along with the 5000 fs time steps of AIMD at 300 K for (a) $MnC_{0.5}Si_{0.5}$ monolayer and (b) bilayer MnSi nanosheet.

Figure S2: (a)The evolution of temperature (K) and the corresponding energy (eV) during the 300 K AIMD of 10000 fs time steps of $MnC_{0.5}Si_{0.5}$ monolayer; (b) the structure of $MnC_{0.5}Si_{0.5}$ monolayer at the end of the 300 K AIMD simulation.

Figure S3: Three relatively low-energy MnSi monolayer (a) and bilayer (b) in the structure search, dE is the energy difference relative the lowest energy.

Figure S4: Three relatively low-energy $MnC_{0.5}Si_{0.5}$ monolayer in the structure search, dE is the energy difference relative the lowest energy.

Figure S5: Variation of the average normalized magnetic moment (M) and specific heat (C) of MnSi (a) and $MnC_{0.5}Si_{0.5}$ (b) monolayer with the NN and NNN interactions.

Figure S6: The electronic band structures of MnSi monolayer (a) $U_{eff} = 3 \text{ eV}$, (b) $U_{eff} = 5 \text{ eV}$, and $MnC_{0.5}Si_{0.5}$ monolayer (c) $U_{eff} = 3 \text{ eV}$, (d) $U_{eff} = 5 \text{ eV}$.

Figure S7: The electronic projection band structure spin up (a+b+c) and spin down (d+e+f) of MnSi monolayer: (a+d) p_x (red line), p_y (green line) and p_z (blue line) orbitals; (b+e) d_{xy} (red line), d_{yz} (green line) and d_{xz} (blue line) orbitals; (c+f) d_{x^2} (orange line), d_{z^2} (purple line) orbitals.

Figure S8: The electronic projection band structure spin up (a+b+c) and spin down (d+e+f) of MnC_{0.5}Si_{0.5} monolayer : (a+d) p_x (red line), p_y (green line) and p_z (blue line) orbitals; (b+e) d_{xy} (red line), d_{yz} (green line) and d_{xz} (blue line) orbitals; (c+f) d_{x^2} (orange line), d_{z^2} (purple line) orbitals.

Figure S9: The band structures of MnSi nanosheet with SOC: (a) monolayer, (b) bilayer.

Figure S10: The different magnetic states of bilayer MnSi nanosheet.

Figure S11: The specific heat versus temperature during the Monte Carlo simulation of bilayer MnSi nanosheet.

Figure S12: The phonon band structure of bilayer $MnC_{0.5}Si_{0.5}$.

Figure S13: The AIMD simulation of surface functionalized bilayer MnSi nanosheet by Br atoms.