Electronic Supplementary Information for

A new route for the shape differentiation of cesium lead bromide perovskite nanocrystals with near-unity photoluminescence quantum yield

Roberto Grisorio, * Daniele Conelli, Rosa Giannelli, Elisabetta Fanizza, Marinella Striccoli, Davide Altamura, Cinzia Giannini, Ignazio Allegretta, Roberto Terzano and Gian Paolo Suranna

Sample	Cs/Pb	Br/Pb	PL peak (nm)	2D ^a	0D ^b	fwhm (meV)	PLQY (%)
NP1	1/4	3/1	513	no	no	92	23
NP2	1/4	4/1	511	yes	no	111	44
NP3	1/4	5/1	507	yes	no	108	14
NP4	1/4	6/1	508	yes	no	100	34
NP5	1/3	3/1	510	yes	no	136	67
NP6	1/3	4/1	512	no	no	89	~100
NP7	1/3	5/1	512	no	no	90	42
NP8	1/3	6/1	508	no	no	110	45
NP9	1/2	3/1	508	no	yes	130	39
NP10	1/2	4/1	510	no	no	130	65
NP11	1/2	5/1	512	no	no	90	81
NP12	1/2	6/1	507	yes	no	100	79
NP13	1/1	3/1	511	no	yes	104	12
NP14	1/1	4/1	511	no	yes	103	13
NP15	1/1	5/1	514	no	yes	86	87
NP16	1/1	6/1	513	no	yes	87	~100

Table S1. Summary of the experimental conditions and optical properties of perovskite NCs synthesized in the presence of oleylamine.

^aIntended as presence/absence of nanoplatelets, nanosheets or $[(RNH_3)_2PbBr_4]_n$ monolayers. ^bPresence/absence of the 0D phase (Cs₄PbBr₆). Conditions yielding near-unity PLQY are highlighted in bold.

Sample	Cs/Pb	Br/Pb	PL peak (nm)	2D ^a	0D ^b	fwhm (meV)	PLQY (%)
NP17	1/4	6/1	513	yes	no	89	33
NP18	1/3	6/1	513	yes	no	83	29
NP19	1/2	6/1	515	yes	no	95	44
NP20	1/1	6/1	510	no	no	92	~100

Table S2. Summary of the experimental conditions and optical properties of perovskite NCs synthesized in the presence of decylamine.

^aIntended as presence/absence of nanoplatelets, nanosheets or $[(RNH_3)_2PbBr_4]_n$ monolayers. ^bPresence/absence of the 0D phase (Cs₄PbBr₆). Conditions yielding near-unity PLQY are highlighted in bold.

Table S3. Summary of the experimental conditions and optical properties of perovskite NCs synthesized in the presence of hexylamine.

Sample	Cs/Pb	Br/Pb	PL peak (nm)	2D ^a	0D ^b	fwhm (meV)	PLQY (%)
NP21	1/4	6/1	-	no	yes	_	_
NP22	1/3	6/1	515	no	no	81	95
NP23	1/2	6/1	516	no	yes	78	35
NP24	1/1	6/1	517	no	yes	86	4

^aIntended as presence/absence of nanoplatelets, nanosheets or [(RNH₃)₂PbBr₄]_n monolayers. ^bPresence/absence of the 0D phase (Cs₄PbBr₆). Conditions yielding near-unity PLQY are highlighted in bold.

Figure S1. (A) Absorption spectra (normalized at $\lambda = 450$ nm, hexane) of the perovskite nanocrystals obtained using a Cs/Pb=1/4 at different Br/Pb ratios (**NP1-4** of Table S1). (B) Normalized emission spectra of the same nanocrystals ($\lambda_{ex} = 450$ nm, hexane), evidencing the emission of nanoplatelets (four-layer thickness, 4ML, $\lambda_{em} = 476$ nm) in the case of **NP2-4**.

Figure S2. (A) Absorption spectra (normalized at $\lambda = 450$ nm, hexane) of the perovskite nanocrystals obtained by using a Cs/Pb=1/3 at different Br/Pb ratios (**NP5-8** of Table S1). (B) Normalized emission spectra of the same nanocrystals ($\lambda_{ex} = 450$ nm, hexane), evidencing the emission of nanoplatelets (six-layer thickness, 6ML, $\lambda_{em} = 492$ nm) in the case of **NP5**.

Figure S3. (A) Absorption spectra (normalized at $\lambda = 450$ nm, hexane) of the perovskite nanocrystals obtained by using a Cs/Pb=1/2 at different Br/Pb ratio (**NP9-12** of Table S1), evidencing the formation of 0D phases ($\lambda_{abs} = 314$ nm) in the case of **NP9** as well as of 2D phases ($\lambda_{abs} = 487$ nm) in the case of **NP12**. (B) Normalized emission spectra of the same nanocrystals ($\lambda_{ex} = 450$ nm, hexane), evidencing the emission of nanoplatelets (four-layer thickness, 4ML, $\lambda_{em} = 478$ nm) in the case of **NP12**.

Figure S4. (A) Absorption spectra (normalized at $\lambda = 450$ nm, hexane) of the perovskite nanocrystals obtained by using a Cs/Pb=1/1 at different Br/Pb ratios (**NP13-16** of Table S1), evidencing the formation of 0D phases ($\lambda_{abs} = 314$ nm). Inset: excitonic peaks of 3D phases present in the same sample. (B) Normalized emission spectra of the same nanocrystals ($\lambda_{ex} = 450$ nm, hexane).

Figure S5. (A) Absorption spectra (normalized at $\lambda = 395$ nm, hexane) of the perovskite nanocrystals obtained by using a Br/Pb=6/1 at different Cs/Pb molar ratios (**NP17-20** of Table S2), evidencing the presence of [(RNH₃)₂PbBr₄]_n monolayers (where R = C₁₀H₂₁, 1ML, $\lambda_{abs} = 395$ nm). (B) Normalized emission spectra of the same nanocrystals ($\lambda_{ex} = 450$ nm, hexane).

Figure S6. (A) Absorption spectra (normalized at $\lambda = 314$ nm, hexane) of the perovskite nanocrystals obtained by using a Br/Pb=6/1 at different Cs/Pb molar ratio (**NP21-24** of Table S3), evidencing the absence of 0D phases ($\lambda_{abs} = 314$ nm) only in the case of **NP22**. (B) Normalized emission spectra of **NP22-24** ($\lambda_{ex} = 450$ nm, hexane), while **NP21** is not emissive.

Figure S7. NOESY spectrum of **NP20** recorded in C_6D_6 . Negative (red) cross-peaks confirm passivation of the NC surface of decylamine ($\delta = 2.7$ ppm) and oleic acid ($\delta = 2.3$ ppm).

Figure S8. XRD (detector scan, with 5° incidence angle) experimental (red) and calculated (grey) patterns of CsPbBr₃ (ICSD n. 97851) for NP6, NP20, NP22 samples, and Cs₄PbBr₆ (ICSD n. 25124) for sample NP21. The background (orange trace) and difference (green trace) profiles are also reported. The reference markers for the expected crystalline phase with the refined unit cell returned by the fit (orange bars) are reported at the bottom of each graph.

Figure S9. TEM image of NP19.

Figure S10. TEM image of NP8.