X-ray-triggered NO-released Bi–SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy

Fangmei Zhang, Shikai Liu, Na Zhang, Ye Kuang, Wenting Li, Shili Gai, Fei He, Arif Gulzar, and Piaoping Yang*

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.

Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China

*Corresponding author
E-mail: yangpiaoping@hrbeu.edu.cn
Calculation of the Photothermal Conversion Efficiency

The photothermal conversion efficiency (η) is calculated as follows:

$$\eta = \frac{hS(T_{\text{max}} - T_{\text{surr}}) - Q_{\text{dis}}}{I(1 - 10^{\lambda/A})}$$

When η is the thermal conversion efficiency of the nanomaterial, S is the area of the sample, T_{max} represents the highest temperature (51.5°C) of the sample after irradiation. T_{surr} stands for the ambient temperature (25.6°C). Q_{dis} is the heat of the blank solvent, which is measured be 20.0 mW. A_λ is the absorbance value of the sample at the excitation wavelength λ ($\lambda = 808$ nm) and A means the absorption intensity of Bi-SNO NPs solution (300 µg mL$^{-1}$), and I is the laser power based on the equation (0.8 W/cm2). hs can be applied the linear time date from the cooling period vs -In θ (Fig. 2e).

$$hs = \frac{mc}{k}$$

Figures

![Fig. S1 The size distribution histograms of Bi-SH, Bi-TEOS, Bi-MPTES, and Bi-SNO NPs, respectively.](image-url)
Fig. S2 (a): UV-vis absorbance spectra of Bi-SNO with different concentrations at room temperature. (b): A linear relationship for the optical absorbance at 808 nm as a function of Bi-SNO concentration (50, 100, 150, 200, 250, 300, and 400 µg mL⁻¹).

Fig. S3 (a) The particle size distributions of Bi-SNO NPs in different solvents (including phosphate buffered solution (PBS), saline, and serum) measured by dynamic light scattering (DLS). (b) The long-term stability of Bi-SNO NPs in various solvents throughout 14-day (336 h).
Fig. S4 X-ray triggered NO release from Bi-SNO in zebrafish larvae. (a) CLMS images of zebrafish incubated with DAF-FM-DA under 5 Gy radiation. (b) CLMS images of zebrafish incubated with Bi-SNO and DAF-FM-DA upon exposure to 5 Gy radiation.

Fig. S5 (a) Calibration curve of absorbance at 540 nm versus the concentration of nitrite (NaNO₂). (b) Quantitative evaluation of NO release from various concentration of Bi-SNO in saline (b), HeLa cells (c), and zebrafish (d).
zebrafish (d) after exposure to X-ray radiation (5 Gy). All experiments were performed according to the Griess kit protocols.

Fig. S6 Immunofluorescent staining of HIF-1α (hypoxia probe, green) and nuclei (DAPI, blue) of tumor slices after various treatment.

Fig. S7 Temperature change curves of tumor-bearing mice intratumorally injected with saline and Bi-SNO.