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Fig. S1. Elemental study obtained with SEM EDS mapping.

Elemental analysis for V, C and O of V8C7 NWs

Table S1. Elemental analysis for C and O in weight percent and V, C and O in atomic percent 

Chemical composition

wt% at%Material

C O V C O

V8C7 NWs 16.94 0.42 53.1 38.4 8.5
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Fig. S2. Morphological change of V8C7 NWs (a-d) and elemental analysis (e-h) after 10 cycle 
to charge and discharge.
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Fig. S3. Elemental study obtained with HAADF TEM EDS mapping.
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Fig. S4. Electron paramagnetic resonance study of V8C7 NWs.
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Reaction equations in detail during synthesis of the V8C7 NWs from precursors.

The chemical reactions involved during ultra-sonication subject, hydrothermal synthesis and 

annealing process can be described as follows:

2NH4VO3 + C2H2O4  2VO2 + 2NH3 + 2CO2 + 2H2O→

9VO2 + 2C  V5O9 + V4O7 + 2CO→

2V5O9 + V4O7 + 4C  7V2O3 + 4CO→

V2O3 + (5-2x)C  2VC1-x + 3CO→

8VC1-x + (8x-1)C  V8C7→

Calculation for resistivity and electrical conductivity from sheet resistance measured.

𝜌 [Ω 𝑐𝑚 ‒ 1] = 𝑅𝑠 [Ω 𝑠𝑞 ‒ 1] × 𝑡 [𝑐𝑚]

𝜎 [𝑆 𝑚 ‒ 1] =  
1
𝜌

where  is resistivity,  is electrical conductivity, Rs is sheet resistance, and t is thickness of 𝜌 𝜎
material.

Thickness of our materials were average 150  10-6 m.×

Table S2. Sheet resistance and calculated electrical conductivity of V8C7 NWs, V2O5 NWs 
and other vanadium-based materials.

Material Resistivity Conductivity Temperatur Reference
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[K]

V8C7 NWs

15.54 m  cm-1Ω

26.22 m  cm-1Ω

22.47 m  cm-1Ω

22.89 m  cm-1Ω

6.435 103 S m-1×  

5.342 103 S m-1×  

5.565 103 S m-1×  

5.921 103 S m-1×  

RT This work

32.09 m  cm-1Ω 3.116 103 S m-1×  

32.06 m  cm-1Ω 3.119 103 S m-1×  

32.08 m  cm-1Ω 3.117 103 S m-1×  
V2O3 NWs

32.10 m  cm-1Ω 3.115 103 S m-1×  

RT This work

V2O5 NWs

37.32  cm-1Ω

37.20  cm-1Ω

37.26  cm-1Ω

37.38  cm-1Ω

4.019 101 S m-1×  

4.032 101 S m-1×  

4.027 101 S m-1×  

4.013 101 S m-1×  

RT This work

V8C7 3.2  cm-1𝜇Ω - 1,378.15 K [1]

Ordered V8C7 30  cm-1 𝜇Ω - RT [1]

Annealed V8C7 40  cm-1 𝜇Ω - RT [1]

Disordered V8C7 49  cm-1 𝜇Ω - RT [1]

Quenched V8C7 70  cm-1 𝜇Ω - RT [1]

V2O3 nanosheet - 2.500 101
 S m-1×  RT [2]

VO2 - 1.000  102 S m-1× 340 K [3]
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Fig. S5. (a) SEM images of bare carbon clothes, (b) V8C7 NWs, (c) V2O3 NWs, and (d) V2O5 

NWs grown on the carbon clothes.
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Fig. S6. Charge-Discharge curves (a) and CV measurement (b) of V2O5 NWs for LIBs.

Table S3. The list of other vanadium compounds in the potential window between 2 and 4 V 

(vs. Li+/Li).

Material
Specific capacity

[mAh g-1]
Cycle number

Capacity 

fading per 

cycle [%]

Current density

[mA g-1]

Referenc

e

V8C7 Nanowires 303 200 0.4 30 This work

1D nanostructure 312 20 1.4 50 [4]

1D nanorods 274 30 0.6 15 [5]

1D nanorods 288 50 0.18 10 [6]

3D uniform yolk-shell 

microspheres
280 30 0.7 30 [7]

2D self-assembled nanobelt 

membrane
290 50 0.28 500 [8]

2D porous nanostructured 

films
294 40 0.45 300 [9]

3D hierarchical urchin-like 

microflowers
274 50 0.4 300 [10]

3D nanostructured hollow 241 110 0.191 300 [11]
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microspheres

3D hollow microspheres 256 50 0.22 300 [12]

2D leaf-like nanosheets 264 100 0.22 500 [13]

3D hierarchical microspheres 266 100 0.25 300 [14]

3D yolk-shell powders 271 100 0.26 1,000 [15]
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