Supplementary Information

Dual-ion acceptable vanadium carbide nanowire cathode integrated with carbon clothes for long cycle stability

Sanghee Nam^a, Pitchai Thangasamy^a, Saewoong Oh^a, Manmatha Mahato^a, Nikhil Koratkar^b,

Il-Kwon Oh*,a

^a National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

^b Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.

* Corresponding author

Phone: +82-42-350-1520, Fax: +82-42-350-1510, e-mail: ikoh@kaist.ac.kr

Fig. S1. Elemental study obtained with SEM EDS mapping.

Elemental analysis for V, C and O of V₈C₇ NWs

Table S1. Elemental analysis for C and O in weight percent and V, C and O in atomic percent

	Chemical composition						
Material	wt	at%					
	С	0	V	С	0		
V ₈ C ₇ NWs	16.94	0.42	53.1	38.4	8.5		

Fig. S2. Morphological change of V_8C_7 NWs (a-d) and elemental analysis (e-h) after 10 cycle to charge and discharge.

Fig. S3. Elemental study obtained with HAADF TEM EDS mapping.

Fig. S4. Electron paramagnetic resonance study of V_8C_7 NWs.

Reaction equations in detail during synthesis of the V₈C₇ NWs from precursors.

The chemical reactions involved during ultra-sonication subject, hydrothermal synthesis and annealing process can be described as follows:

 $2NH_4VO_3 + C_2H_2O_4 \rightarrow 2VO_2 + 2NH_3 + 2CO_2 + 2H_2O$

 $9\mathrm{VO}_2 + 2\mathrm{C} \xrightarrow{\rightarrow} \mathrm{V}_5\mathrm{O}_9 + \mathrm{V}_4\mathrm{O}_7 + 2\mathrm{CO}$

 $2V_5O_9 + V_4O_7 + 4C \rightarrow 7V_2O_3 + 4CO$

 $V_2O_3 + (5-2x)C \rightarrow 2VC_{1-x} + 3CO$

 $8VC_{1-x} + (8x-1)C \rightarrow V_8C_7$

Calculation for resistivity and electrical conductivity from sheet resistance measured.

$$\rho \left[\Omega \ cm^{-1}\right] = R_s \left[\Omega \ sq^{-1}\right] \times t \ [cm]$$

$$\sigma\left[S\,m^{-1}\right] = \frac{1}{\rho}$$

where ρ is resistivity, σ is electrical conductivity, R_s is sheet resistance, and t is thickness of material.

Thickness of our materials were average 150×10^{-6} m.

Table S2. Sheet resistance and calculated electrical conductivity of V_8C_7 NWs, V_2O_5 NWs and other vanadium-based materials.

Material	Resistivity	Conductivity	Temperatur	Reference

			e		
			[K]		
V ₈ C ₇ NWs	$15.54 \text{ m}^{\Omega} \text{ cm}^{-1}$	$6.435 \times 10^3 \mathrm{S \ m^{-1}}$			
	$26.22 \text{ m}^{\Omega} \text{ cm}^{-1}$	$5.342 \times 10^3 \mathrm{S \ m^{-1}}$	рт	This work	
	$22.47 \text{ m}^{\Omega} \text{ cm}^{-1}$	$5.565 \times 10^3 \mathrm{S m^{-1}}$	KI		
	$22.89 \text{ m}^{\Omega} \text{ cm}^{-1}$	$5.921 \times 10^3 \text{ S m}^{-1}$			
	$32.09 \text{ m}^{\Omega} \text{ cm}^{-1}$	$3.116 \times 10^3 \mathrm{S m^{-1}}$			
	$32.06 \text{ m}^{\Omega} \text{ cm}^{-1}$	$3.119 \times 10^3 \mathrm{S m^{-1}}$	рт	This work	
V ₂ O ₃ NWS	$32.08 \text{ m}^{\Omega} \text{ cm}^{-1}$	$3.117 \times 10^3 \mathrm{S m^{-1}}$	KI	THIS WOLK	
	$32.10 \text{ m}^{\Omega} \text{ cm}^{-1}$	$3.115 \times 10^3 \mathrm{S m^{-1}}$			
	37.32 Ω cm ⁻¹	$4.019 \times 10^{1} \mathrm{S}\mathrm{m}^{-1}$			
	$37.20 \ \Omega \ \mathrm{cm}^{-1}$	$4.032 \times 10^{1} \mathrm{S}\mathrm{m}^{-1}$	DТ	This work	
V ₂ O ₅ INWS	$37.26 \ \Omega \ \mathrm{cm}^{-1}$	$4.027 \times 10^{1} \text{ S m}^{-1}$	KI		
	$37.38 \ \Omega \ \mathrm{cm^{-1}}$	$4.013 \times 10^{1} \text{ S m}^{-1}$			
V ₈ C ₇	$3.2 \ \mu\Omega \ \mathrm{cm}^{-1}$	-	1,378.15 K	[1]	
Ordered V ₈ C ₇	$30 \mu\Omega \mathrm{cm}^{-1}$	-	RT	[1]	
Annealed V ₈ C ₇	$40\mu\Omega~{ m cm^{-1}}$	-	RT	[1]	
Disordered V ₈ C ₇	$49 \mu\Omega \mathrm{cm}^{-1}$	-	RT	[1]	
Quenched V ₈ C ₇	$70 \mu\Omega \mathrm{cm}^{-1}$	-	RT	[1]	
V ₂ O ₃ nanosheet	-	$2.500 \times 10^{1} \mathrm{S}\mathrm{m}^{-1}$	RT	[2]	
VO ₂	-	$1.000 \times 10^2 \mathrm{S m^{-1}}$	340 K	[3]	

Fig. S5. (a) SEM images of bare carbon clothes, (b) V_8C_7 NWs, (c) V_2O_3 NWs, and (d) V_2O_5 NWs grown on the carbon clothes.

Fig. S6. Charge-Discharge curves (a) and CV measurement (b) of V_2O_5 NWs for LIBs.

Table S3.	The list	of other	vanadium	compounds	in the p	ootential	window	between 2	2 and 4	ŧ V
(vs. Li+/Li	i).									

Material	Specific capacity [mAh g ⁻¹]	Cycle number	Capacity fading per cycle [%]	Current density [mA g ⁻¹]	Referenc e	
V ₈ C ₇ Nanowires	303	200	0.4	30	This work	
1D nanostructure	312	20	1.4	50	[4]	
1D nanorods	274	30	0.6	15	[5]	
1D nanorods	288	50	0.18	10	[6]	
3D uniform yolk-shell	280	20	0.7	20	[7]	
microspheres	280	50	0.7	30	[/]	
2D self-assembled nanobelt	200	50	0.28	500	[0]	
membrane	290	50	0.28	500	٢٥١	
2D porous nanostructured	204	40	0.45	200	[0]	
films	294	40	0.45	300	[9]	
3D hierarchical urchin-like	274	50	0.4	200	[10]	
microflowers	274	50	0.4	300	[10]	
3D nanostructured hollow	241	110	0.191	300	[11]	

microspheres

3D hollow microspheres	256	50	0.22	300	[12]
2D leaf-like nanosheets	264	100	0.22	500	[13]
3D hierarchical microspheres	266	100	0.25	300	[14]
3D yolk-shell powders	271	100	0.26	1,000	[15]

References

- Shacklette LW, Williams WS. Influence of order-disorder transformations on the electrical resistivity of vanadium carbide. Phys Rev B 1973;7:5041–53.
- [2] Li Q, Xue Y, Qian Y. V₂O₃ ultrathin nanosheets: Controlled synthesis and electrical properties. Mater Lett 2014;130:198–201.
- [3] Andreev VN, Klimov VA. Electrical conductivity of the semiconducting phase in vanadium dioxide single crystals. Phys Solid State 2007;49:2251–5.
- [4] Ng SH, Chew SY, Wang J, Wexler D, Tournayre Y, Konstantinov K, et al. Synthesis and electrochemical properties of V₂O₅ nanostructures prepared via a precipitation process for lithium-ion battery cathodes. J Power Sources 2007;174:1032–5.
- [5] Pan A, Zhang JG, Nie Z, Cao G, Arey BW, Li G, et al. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 2010;20:9193–9.
- [6] Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, et al. Low-cost synthesis of hierarchical V₂O₅ microspheres as high-performance cathode for lithium-ion batteries. ACS Appl Mater Interfaces 2013;5:7671–5.
- [7] Ko YN, Kang YC, Park S Bin. A new strategy for synthesizing yolk-shell V₂O₅

powders with low melting temperature for high performance Li-ion batteries. Nanoscale 2013;5:8899–903.

- [8] Glushenkov AM, Hassan MF, Stukachev VI, Guo Z, Liu HK, Kuvshinov GG, et al. Growth of V₂O₅ nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J Solid State Electrochem 2010;14:1841–6.
- [9] Liu J, Zhou Y, Wang J, Pan Y, Xue D. Template-free solvothermal synthesis of yolkshell V₂O₅ microspheres as cathode materials for Li-ion batteries. Chem Commun 2011;47:10380–2.
- [10] Wang Y, Zhang HJ, Siah KW, Wong CC, Lin J, Borgna A. One pot synthesis of selfassembled V₂O₅ nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J Mater Chem 2011;21:10336–41.
- [11] Liu Y, Li J, Zhang Q, Zhou N, Uchaker E, Cao G. Porous nanostructured V₂O₅ film electrode with excellent Li-ion intercalation properties. Electrochem Commun 2011;13:1276–9.
- [12] Pan A, Wu H Bin, Yu L, Zhu T, Lou XW. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 2012;4:3874–9.
- [13] Uchaker E, Zhou N, Li Y, Cao G. Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V₂O₅ hollow microspheres. J Phys Chem C 2013;117:1621–6.
- [14] Pan A, Wu H Bin, Yu L, Lou XWD. Template-Free Synthesis of VO₂ HollowMicrospheres with Various Interiors and Their Conversion into V₂O₅ for Lithium-Ion

Batteries. Angew Chemie 2013;125:2282-6.

[15] Li Y, Yao J, Uchaker E, Yang J, Huang Y, Zhang M, et al. Leaf-like V₂O₅ nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv Energy Mater 2013;3:1171–5.