Supplementary Information

A FRET-based ratiometric fluorescent probe to detect cysteine metabolism in mitochondria

Xiaojing Han, Zhiyao Zhai, Xiaopeng Yang, Di Zhang, Jun Tang, Jianming Zhu, Xiaofei Zhu, Yong Ye

Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
Journal of Zhengzhou University, Zhengzhou University, Zhengzhou, China

*Corresponding author; Email: yeyong03@tsinghua.org.cn (Yong Ye)
They equally contribute to this paper.
Cell Culture and Imaging

MCF-7 cells were grown in RPMI-1640 provided with 10% PBS, at 37 °C, under 5% CO₂. Probe CP-K (10 μM) was added to MCF-7 cells and incubated at 37 °C for 0.5 hour in 5%CO₂. Next, PBS buffer (pH 7.4) wash the cell for three times. Then, the cells were added to NaHSO₃ solution for another 30 min in 5% CO₂ and washed three times with PBS buffer. Colocalization experiment the MCF-7 cells were processed a mitochondria staining probe, Mito Tracker Green FM (500 nM) and probe CP-K (10 μM) for additional 0.5 h and washed with PBS buffer (pH 7.4). To monitor cysteine metabolism, MCF-7 cells were incubated with 10 mM of Cys for 0.5 h and then treated 10 μM probe for 4 h. The cells imaging were used by Leica TCS SP8 confocal microscope.

Figure S1. ¹H NMR spectrum of CP-K in DMSO-d₆.
Figure S2. 13C NMR spectrum of CP-K in DMSO-d$_6$.

Figure S3. HR-MS spectra of CP-K.
Figure S4. The UV-vis spectra of probe CP-K (10.0 µM) in the presence of NaHSO₃ (0–10 equiv.) in the PBS buffer (10 mM, pH=7.4, containing 50% ethanol).

Figure S5. The UV-vis spectra of probe CP-K (10 µM) with NaHSO₃ (10 equiv.) and other various anions (10 equiv.) in the PBS buffer (10 mM, pH=7.4, containing 50% ethanol). (a: probe, b: probe+NaHSO₃, c: probe+Competing species)
Figure S6. HR-MS spectra of CP-K in the presence of HSO3– (10 equiv.).