Sulfur-Mediated Synthesis of Unsymmetrically Substituted N-Aryl Oxalamides by the Cascade Thioamidation/Cyclocondensation and Hydrolysis Reaction

Tatyana A. Tikhonova,[†] Nikita A. Ilment,[†] Konstantin A. Lyssenko,^{‡, §}

Igor V. Zavarzin,[†] Yulia A. Volkova[†]

[†] N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991, Moscow, Russia, yavolkova@gmail.com

[‡]Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991,

Moscow, Russia.

[§] Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow, 117997, Russia.

List of Contents

X-ray data	S-2
Pictures of experiments	S-4
Copies of ¹ H and ¹³ C NMR Spectra for Compounds	S5-S26

	21.	20
	30	30
CCDC number	1942001	1941999
Empirical formula	$C_{22}H_{19}ClN_{3}O_{3}S$	$C_{20}H_{16}ClN_{3}O_{2}$
Formula weight	440.91	365.81
Т, К	120	120
Crystal system	Monoclinc	Monoclinc
Space group	C2/c	$P2_1/c$
Z (Z')	8 (1)	4(1)
a, Å	35.957(3)	12.174(2)
b, Å	6.1171(5)	12.709(3)
c, Å	19.5083(15)	12.335(3)
α, °	90	90
β, °	96.604(2)	117.06(3)
γ, °	90	90
V, Å ³	4262.5(6)	1699.6(7)
d _{calc} ,gcm ₋₃	1.374	1.430
μ, cm ⁻¹	3.06	2.45
F(000)	1832	760
$2 heta_{ m max},^{\circ}$	58	58
Reflections collected	24783	14513
Reflections unique (R _{int})	5675 (0.0280)	4465 (0.0232)
Reflections with $I > 2\sigma(I)$	4770	3927
Variables/restraints	229/139	251/0
R1	0.0668	0.0353
wR2	0.2045	0.0943
GOF	1.059	1.034
Largest difference in peak / hole (e/Å ³)	1.034/-0.807	0.373/-0.401

Table S1. X-ray crystallographic data and refinement details for studied molecules

X-ray diffraction data for all studied compounds were collected using a SMART APEX II areadetector diffractometer (graphite monochromator, ω -scan technique) at the temperature of 120(2)K, using Mo_{Ka}radiation (0.71073 Å). The intensity data were integrated by the SAINT program and corrected for absorption and decay by the multi-scan method (semi-empirical from equivalents) implemented in SADABS.¹ All structures were solved by direct methods using SHELXS² and were refined against F² using SHELXL-2017.³ All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-H hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters taken as $U_{iso}(H)=1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H)=1.2U_{eq}(C)$ otherwise. Crystal data, data collection and structure refinement details are summarized in Table S1.

(1) Bruker. APEXII, Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.

- (2) Sheldrick, G. M. A short history of SHELX. Acta Cryst., Sect. A 2008, A64, 112-122.
- (3) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

Pictures of experiments

1a + 2a +S₈ in water/DMF, 140 °C, 5 h

S-5

chlorophenyl)oxalamide (3b)

¹³C NMR (75 MHz, DMSO- d_6) spectrum of N^1 -(2'-amino-[1,1'-biphenyl]-2-yl)- N^2 -(2-chlorophenyl)oxalamide (**3c**)

¹H NMR (300 MHz, DMSO- d_6) spectrum of N^1 -(2'-amino-[1,1'-biphenyl]-2-yl)- N^2 -(4iodophenyl)oxalamide (3e)

iodophenyl)oxalamide (3e)

¹³C NMR (75 MHz, CDCl₃) spectrum of N^{I} -(2'-amino-[1,1'-biphenyl]-2-yl)- N^{2} -(4-(trifluoromethyl)phenyl)oxalamide (**3f**)

¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ¹³C NMR (75 MHz, CDCl₃) spectrum of N^{I} -(2'-amino-[1,1'-biphenyl]-2-yl)- N^{2} -phenyloxalamide (**3h**)

¹H NMR (300 MHz, CDCl₃) spectrum of N^{l} -(2'-amino-[1,1'-biphenyl]-2-yl)- N^{2} -(p-tolyl)oxalamide (**3i**)

tolyl)oxalamide (**3j**)

tolyl)oxalamide (**3j**)

¹H NMR (300 MHz, DMSO-d₆) spectrum of 2-((2'-amino-[1,1'-biphenyl]-2-yl)amino)-N-(naphthalen-2-yl)acetamide (**3k**)

benzyloxalamide (**3l**)

¹H NMR (300 MHz, DMSO- d_6) spectrum of N^1 -(2'-amino-[1,1'-biphenyl]-2-yl)- N^2 -heptyloxalamide (**3m**)

¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ¹³ ¹³C NMR (75 MHz, DMSO-*d*₆) spectrum of N^{I} -(2'-amino-[1,1'-biphenyl]-2-yl)oxalamide (**3n**)

(2,3-dimethylphenyl)oxalamide (**3p**)

ò f1 (мд) ¹³C NMR (75 MHz, DMSO-*d6*) spectrum of N^{I} -(2'-amino-5,5'-dibromo-[1,1'-biphenyl]-2-yl)- N^{2} -(3,4-dichlorophenyl)oxalamide (3q)

---9.36

---3.68

¹H NMR (300 MHz, CDCl₃) spectrum of N-(2'-amino-[1,1'-biphenyl]-2-yl)-2-oxo-2-phenylacetamide (**6a**)

 ^{13}C NMR (75 MHz, CDCl₃) spectrum of *N*-(2'-amino-[1,1'-biphenyl]-2-yl)-2-oxo-2-phenylacetamide (**6a**)

¹H NMR (300 MHz, DMSO-*d6*) spectrum of N^1 -(2'-(4-methoxybenzamido)-[1,1'-biphenyl]-2-yl)- N^2 -(*p*-tolyl)oxalamide (7)

yl)- N^2 -(p-tolyl)oxalamide (7)

S-25

