Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Practical Direct Synthesis of N-Aryl-Substituted Azacycles from

N-Alkyl Protected Arylamines Using TiCl₄ and DBU

Van Hieu Tran, ^{a,b} Minh Thanh La,^{a,c} Soosung Kang,^c and Hee-Kwon Kim^{a,b,*}

^aDepartment of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea ^bResearch Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea ^cCollege of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans

University, Seoul 03760, Republic of Korea

Corresponding author: Hee-Kwon Kim.

* Corresponding author.

Tel: +82 63 250 2768; Fax: +82 63 255 1172.

E-mail address: hkkim717@jbnu.ac.kr (H-K Kim).

Table of Contents

Table of Contents	S1
Screening of reaction conditions for the preparation of azacycles	
¹ H and ¹³ C NMR Spectra	S3-S33

$ \begin{array}{c} & H \\ & H $								
1a	2a	3a						
Entry	Aniline	THF	TiCl ₄	DBU	Temp.	Yield ^b		
	(equiv.)	(equiv.)	(equiv.)	(equiv.)		(%)		
1	1	20	1.5	2.0	140 °C	93		
2	1	20	1.5	2.0	130 °C	93		
3	1	20	1.5	2.0	120 °C	93		
4	1	20	1.5	2.0	110 °C	54		
5	1	20	1.5	2.0	100 °C	8		

Table S1. Screening of temperature for preparation of azacycles^a

^a Reaction conditions: compound 1a (2.0 mmol), THF 2a (40 mmol), TiCl₄ (3.0 mmol), DBU (4.0 mmol), 14 h
^b Isolated yield after purification by flash column chromatography.

1-phenylpyrrolidine (3a)

¹H NMR spectrum of 1-phenylpyrrolidine (**3a**)

¹³C NMR spectrum of 1-phenylpyrrolidine (**3a**)

1-*p*-tolylpyrrolidine (3b)

¹H NMR spectrum of 1-*p*-tolylpyrrolidine (**3b**)

¹³C NMR spectrum of 1-*p*-tolylpyrrolidine (**3b**)

1-*m*-tolylpyrrolidine (3c)

¹H NMR spectrum of 1-*m*-tolylpyrrolidine (3c)

1-(4-methoxyphenyl)pyrrolidine (3d)

¹H NMR spectrum of 1-(4-methoxyphenyl)pyrrolidine (3d)

¹³C NMR spectrum of 1-(4-methoxyphenyl)pyrrolidine (3d)

1-(4-*tert*-butylphenyl)pyrrolidine (3e)

¹H NMR spectrum of 1-(4-*tert*-butylphenyl)pyrrolidine (3e)

¹³C NMR spectrum of 1-(4-*tert*-butylphenyl)pyrrolidine (3e)

1-(3,5-dimethylphenyl)pyrrolidine (3f)

¹H NMR spectrum of 1-(3,5-dimethylphenyl)pyrrolidine (3f)

¹³C NMR spectrum of 1-(3,5-dimethylphenyl)pyrrolidine (3f)

1-(2,6-dimethylphenyl)pyrrolidine (3g)

¹H NMR spectrum of 1-(2,6-dimethylphenyl)pyrrolidine (**3g**)

¹³C NMR spectrum of 1-(2,6-dimethylphenyl)pyrrolidine (**3g**)

1-(4-chlorophenyl)pyrrolidine (3h)

¹H NMR spectrum of 1-(4-chlorophenyl)pyrrolidine (3h)

¹³C NMR spectrum of 1-(4-chlorophenyl)pyrrolidine (**3h**)

1-(3-chlorophenyl)pyrrolidine (3i)

¹H NMR spectrum of 1-(3-chlorophenyl)pyrrolidine (3i)

¹³C NMR spectrum of 1-(3-chlorophenyl)pyrrolidine (3i)

1-(4-fluorophenyl)pyrrolidine (3j)

¹H NMR spectrum of 1-(4-fluorophenyl)pyrrolidine (3j)

¹³C NMR spectrum of 1-(4-fluorophenyl)pyrrolidine (3j)

1-(2,4-difluorophenyl)pyrrolidine (3k)

¹H NMR spectrum of 1-(2,4-difluorophenyl)pyrrolidine (3k)

¹³C NMR spectrum of 1-(2,4-difluorophenyl)pyrrolidine (3k)

4-(pyrrolidin-1-yl)benzonitrile (3l)

¹H NMR spectrum of 4-(pyrrolidin-1-yl)benzonitrile (31)

¹³C NMR spectrum of 4-(pyrrolidin-1-yl)benzonitrile (31)

1-(4-nitrophenyl)pyrrolidine (3m)

¹H NMR spectrum of 1-(4-nitrophenyl)pyrrolidine (3m)

¹³C NMR spectrum of 1-(4-nitrophenyl)pyrrolidine (3m)

1-(naphthalen-1-yl) pyrrolidine (3n)

¹H NMR spectrum of 1-(naphthalen-1-yl)pyrrolidine (**3n**)

¹³C NMR spectrum of 1-(naphthalen-1-yl)pyrrolidine (**3n**)

2-methyl-1-phenylpyrrolidine (4a)

¹H NMR spectrum of 2-methyl-1-phenylpyrrolidine (4a)

¹³C NMR spectrum of 2-methyl-1-phenylpyrrolidine (4a)

2-methyl-1-m-tolylpyrrolidine (4b)

¹H NMR spectrum of 2-methyl-1-m-tolylpyrrolidine (4b)

¹³C NMR spectrum of 2-methyl-1-m-tolylpyrrolidine (4b)

1-(3,5-dimethylphenyl)-2-methylpyrrolidine (4c)

¹H NMR spectrum of 1-(3,5-dimethylphenyl)-2-methylpyrrolidine (**4c**)

¹³C NMR spectrum of 1-(3,5-dimethylphenyl)-2-methylpyrrolidine (4c)

1-(4-fluorophenyl)-2-methylpyrrolidine (4d)

¹H NMR spectrum of 1-(4-fluorophenyl)-2-methylpyrrolidine (4d)

¹³C NMR spectrum of 1-(4-fluorophenyl)-2-methylpyrrolidine (4d)

1-phenylpiperidine (4e)

¹H NMR spectrum of 1-phenylpiperidine (4e)

¹³C NMR spectrum of 1-phenylpiperidine (4e)

2-phenylisoindoline (4f)

¹H NMR spectrum of 2-phenylisoindoline (4f)

¹³C NMR spectrum of ¹H NMR spectrum of 2-phenylisoindoline (4f)

2-p-tolylisoindoline (4g)

¹H NMR spectrum of 2-*p*-tolylisoindoline (**4g**)

¹³C NMR spectrum of 2-*p*-tolylisoindoline (**4g**)

2-(4-ethylphenyl)isoindoline (4h)

¹H NMR spectrum of 2-(4-ethylphenyl)isoindoline (**4h**)

¹³C NMR spectrum of 2-(4-ethylphenyl)isoindoline (**4h**)

2-(4-chlorophenyl)isoindoline (4i)

¹H NMR spectrum of 2-(4-chlorophenyl)isoindoline (4i)

¹³C NMR spectrum of 2-(4-chlorophenyl)isoindoline (4i)

2-phenyl-1,2,3,4-tetrahydroisoquinoline (4j)

¹H NMR spectrum of 2-phenyl-1,2,3,4-tetrahydroisoquinoline (4j)

¹³C NMR spectrum of 2-phenyl-1,2,3,4-tetrahydroisoquinoline (4j)

2-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinoline (4k)

¹H NMR spectrum of 2-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinoline (4k)

¹³C NMR spectrum of 2-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinoline (4k)

2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (4l)

¹H NMR spectrum of 2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (41)

¹³C NMR spectrum of 2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (41)

4-(3,4-dihydroisoquinolin-2(1H)-yl)benzonitrile (4m)

¹H NMR spectrum of 4-(3,4-dihydroisoquinolin-2(1H)-yl)benzonitrile (**4m**)

¹³C NMR spectrum of 4-(3,4-dihydroisoquinolin-2(1H)-yl)benzonitrile (4m)

1-benzylpyrrolidine (8)

¹H NMR spectrum of 1-benzylpyrrolidine (8)

¹³C NMR spectrum of 1-benzylpyrrolidine (8)

(1,4-di(pyrrolidin-1-yl)benzene) (11)

¹H NMR spectrum of (1,4-di(pyrrolidin-1-yl)benzene) (11)

¹³C NMR spectrum of (1,4-di(pyrrolidin-1-yl)benzene) (11)

N-isopropyl-4-(pyrrolidin-1-yl)anilin (12)

¹H NMR spectrum of *N*-isopropyl-4-(pyrrolidin-1-yl)aniline (12)

¹³C NMR spectrum of *N*-isopropyl-4-(pyrrolidin-1-yl)aniline (12)

1-(4-(pyrrolidin-1-yl)phenyl)piperidine (13)

¹H NMR spectrum of 1-(4-(pyrrolidin-1-yl)phenyl)piperidine (13)

¹³C NMR spectrum of 1-(4-(pyrrolidin-1-yl)phenyl)piperidine (13)