Electronic Supplementary Information

Functionalization of amine-cured epoxy resins by boronic acids based on dynamic dioxazaborocane formation

Yumiko Ito, Daisuke Aoki, and Hideyuki Otsuka*

Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

*Corresponding author: Hideyuki Otsuka (Email: otsuka@polymer.titech.ac.jp)
Fig. S1. UV-vis spectra of SpBA before (black) and after (purple) UV irradiation (254 nm, 2 min). Spectra were recorded on a 12.0 µM solution in acetonitrile.

Fig. S2. FT-IR spectra of DEAal (red), SpBA (blue) and DEAal-SpBA (black) (NaCl).
Fig. S3. UV-vis spectra of PSpBA before (black) and after (purple) UV irradiation (254 nm, 20 min). Spectra were recorded on an 8.00 mM solution in acetonitrile.

Fig. S4. ATR-FTIR spectra of ER’ (black) and ER’ coated with PSpBA (blue).
Fig. S5. Reversible color change of PSpBA coating

Fig. S6. Procedure for the evaluation of adhesion strength.
Fig. S7. 1H NMR spectrum of the mixture of 4-methylphenylboronic acid and diethanolamine (DMSO-d_6, 500 MHz).

Fig. S8. 1H NMR spectrum of the mixture of 4-methylphenylboronic acid and 2,3-butane diol (DMSO-d_6, 500 MHz).
Fig. S9. 1H NMR spectrum of the mixture of DOAB and 2,3-butanediol after their transesterification reached the equilibrium (DMSO-d_6, 500 MHz).

Fig. S10. 1H NMR spectrum of the mixture of DOB and diethanolamine after their transesterification reached the equilibrium (DMSO-d_6, 500 MHz).