Supporting Information

Hydrogen-Bonded Supramolecular Micelle-Mediated Drug Delivery
Enhances the Efficacy and Safety of Cancer Chemotherapy

Chih-Chia Cheng,a,b* Ya-Ting Sun,a Ai-Wei Lee,f,g,h Shan-You Huang,a Wen-Lu Fan,a Yu-Hsuan Chiao,i Chih-Wei Chiu,d and Juin-Yih Lai,a,b,c,e

a. Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan. E-mail: cccheng@mail.ntust.edu.tw

b. Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

c. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

d. Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

e. R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan.

f. Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.

g. Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.

h. Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan.

i. Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States.
Scheme S1: Synthetic routes for BDAP-PEG.
Fig. S1: 500 MHz 1H NMR spectrum of dipropargyl PEG in deuterated chloroform (CDCl$_3$) at 25 °C.
Fig. S2: 500 MHz 1H NMR spectrum of BDAP-PEG in CDCl$_3$ at 25 °C.
Fig. S3: GPC traces of dipropargyl PEG and BDAP-PEG with DMF eluent at 50 °C.
Fig. S4: MALDI-TOF mass spectra of dipropargyl PEG and BDAP-PEG.
Fig. S5: 500 MHz 1H NMR spectra for BDAP-PEG in 1,1,2,2-tetrachloroethane-d_2 at various temperatures.
Fig. S6: Particle size distribution of blank and DOX-loaded BDAP-PEG micelles (DLC = 17.60 ± 1.5%) in water at 25 °C.

Figure S7: Digital photos for (a) blank and (b) DOX-loaded BDAP-PEG micelles in aqueous solution.
Fig. S8: *In vitro* cytotoxicity assay of BDAP-PEG micelles towards NIH/3T3 cells at 24 h.
Fig. S9: *In vitro* cytotoxicity of BDAP-PEG micelles towards HeLa cells at 24 h.
Fig. S10: CLSM images of HeLa cells incubated with DOX-loaded BDAP-PEG micelles (DLC = 17.60 ± 1.5%) for 6 h or 16 h at pH 7.4 and 37 °C. Micrographs of DOX-loaded micelles stained with the nuclear stain DAPI (top panel; blue), characteristic DOX fluorescence (middle panel; red) and merged images (lower panel). Scale bars are 20 μm for all images.
Fig. S11: Quantification of apoptosis by Annexin-V/PI double staining and flow cytometry. Dot plot diagrams of HeLa cells incubated with DOX-loaded BDAP-PEG (DLC = 17.60 ± 1.5%) for 1, 12 or 24 h at pH 6.5 and 37 °C.
In order to provide more detailed material properties, CMC and DLS measurements were employed to characterize the self-assembly behavior of difunctional hexyl-terminated PEG (BC6-PEG, Fig. S12) in water. Fig. S13 shows that aqueous BC6-PEG solution with a broad range of concentrations between 1 and 10^{-5} mg/mL did not exhibit a CMC transition. However, BDAP-PEG exhibited a clear CMC at 0.005 mg/mL, suggesting that the DAP moieties within BDAP-PEG significantly affected the amphiphilicity and molecular motion of the PEG backbone in water. DLS revealed that BC6-PEG did not exhibit micellar aggregates, whereas BDAP-PEG exhibited a mean hydrodynamic diameter of 53 ± 15 nm (Fig. S14), indicting introduction of DAP groups into the PEG chain ends facilitated the formation of nanosized micelles.

Figure S12: 1H NMR spectrum of BC6-PEG in CDCl$_3$.

Figure S13:
Figure S13: CMC determination for BC6-PEG and BDAP-PEG.

Figure S14: DLS analyses of 1.0 mg/mL solutions of BC6-PEG and BDAP-PEG in aqueous solution.