Supporting Information

Effects of Various Cu(0), Fe(0), and Proanthocyanidins Reducing Agents on Fe(III)-Catalysed ATRP to the Synthesis of PMMA Block Copolymers and Their Self-assembly Behaviours

Yi-Shen Huanga, Han-Yu Hsuehb, Junko Aimic, Li-Chieh Choua, Yu-Chi Lua, Shiao-Wei Kuod,e, Chung-Chi Wangf, Kuo-Yu Chen*g and Chih-Feng Huang*a

aDepartment of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan.
bDepartment of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
cMolecular Design & Function Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
dDepartment of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
eDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
fDivision of Cardiovascular Surgery, Veterans General Hospital, Taichung, Taiwan.
gDepartment of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.

* Correspondence: chenkuo@yuntech.edu.tw and HuangCF@dragon.nchu.edu.tw
Captions:

Figure S1. Kinetics of Cu(II)-catalyzed ARGET ATRP (a) with and (b) without PC at 60 °C (MMA/EBiB/PC/CuBr₂/PMDETA = 500/1/0.5/0.1/1 in anisole; [MMA]₀ = 4.5 M).

Figure S2. Kinetics of Cu(II)-catalyzed ATRP with different M/I ratios in the presence of PC (MMA/EBiB/PC/CuBr₂/PMDETA = 100 (or 500)/1/0.1/0.5/1 in anisole; [MMA]₀ = 4.5 M).

Figure S3. GPC traces of Cu(II)-catalyzed ATRP with different M/I ratios in the presence of PC (MMA/EBiB/CuBr₂/PC/PMDETA = 100 (or 500)/1/0.1/0.5/1 in anisole; [MMA]₀ = 4.5 M).

Figure S4. Kinetics of ATRP of MMA without degassing using (a) Cu(0) and (b) PC as RAs (MMA/EBiB/RA/FeCl₃/PPh₃ = 200/1/5/0.1/0.5 in anisole; [MMA]₀ = 4.5 M).

Figure S5. FT-IR spectra (4000–400 cm⁻¹) of (a) PMMA-b-PBzMA and (b) PMMA-b-PBMA block copolymers.
Figure S1. Kinetics of Cu(II)-catalyzed ARGET ATRP (a) with and (b) without PC at 60 °C (MMA/EBiB/PC/CuBr$_2$/PMDETA = 500/1/0.5/0.1/1 in anisole; [MMA]$_0$ = 4.5 M).
Figure S2. Kinetics of Cu(II)-catalyzed ATRP with different M/I ratios in the presence of PC (MMA/EBiB/PC/CuBr$_2$/PMDETA = 100 (or 500)/1/0.5/0.1/1 in anisole; [MMA]$_0$ = 4.5 M).
Figure S3. GPC traces of Cu(II)-catalyzed ATRP with different M/I ratios in the presence of PC (MMA/EBiB/PC/CuBr₂/PMDETA = 100 (or 500)/1/0.5/0.1/1 in anisole; [MMA]₀ = 4.5 M).
Figure S4. Kinetics of ATRP of MMA without degassing using (a) Cu(0) and (b) PC as RAs (MMA/EBiB/RA/FeCl$_3$/PPh$_3$ = 200/1/5/0.1/0.5 in anisole; [MMA]$_0$ = 4.5 M).
Figure S5. FT-IR spectra (4000–400 cm\(^{-1}\)) of (a) PMMA-\(b\)-PBzMA and (b) PMMA-\(b\)-PBMA block copolymers.