Supplementary Information

Iodine-mediated photocontrolled atom transfer radical polymerization (photo-ATRP) and block polymerization combined with ring-opening polymerization (ROP) via a superbase

Mengmeng Li, Sixuan Wang, Feifei Li, Lin Zhou, Lin Lei*

Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.

E-mail: <u>leil@nwu.edu.cn</u>

1. Supporting data

Fig. S1 UV-vis spectra of TBD (0.02 mmol) with NaI (0.021 mmol) (black line), then Br-Ph-OH (0.02 mmol) was added to this solution (blue line) and irradiated with a white LED for 10 min (pink line). Solvent: MMA.

Fig. S2 UV-vis spectra of DBU (0.02 mmol) with NaI (0.021 mmol) (black line), then Br-Ph-OH (0.02 mmol) was added to this solution (blue line) and irradiated with a white LED for 10 min (pink line). Solvent: MMA.

Fig. S3 UV-vis spectra of *t*-Bu-P₄ (0.02 mmol) with NaI (0.021 mmol) (black line), then Br-Ph-OH (0.02 mmol) was added to this solution (blue line) and irradiated with a white LED for 10 min (pink line). Solvent: MMA.

Table S1. Preparation of PMMA by iodine-mediated photo-ATRP under white LED irradiation (dark condition data in Fig. 2a).

Entry	Monomer	Catalyst	[MMA] ₀ /[_L -LA] ₀ /[Br-Ph- OH] ₀ / [NaI] ₀ /[Catalyst] ₀ (mM)	<i>t</i> (h)	Conv. ^b (%)	$M_{\rm n}^{\rm d} (M_{ m n,theo})^{ m e}$	PDI
	MMA	TMG	100:0:1:1.025:1	0.5-1	30	4,800 (3,000)	1.6
				1.5-2	47	5,900 (4,700)	1.5
				2.5-3	60.5	7,500 (6,100)	1.39

Experimental conditions: see Table 1.

Fig.S4 (a) ¹H NMR spectrum (in CDCl₃) of PMMA and (b) PMMA-*b*-PLLA (entry 4, Table1).

Fig.S5 GPC traces of PMMA and PMMA-b-PTMC (entry 1, Table 2).

Fig.S6 ¹H NMR spectrum of PBzMA-*b*-PLLA (entry 2, Table 2).

Fig.S7 GPC traces of PBzMA and PBzMA-b-PLLA (entry 2, Table 2).

Fig.S8 GPC traces of PLLA and PLLA-b-PMMA (entry 3, Table 2).

Fig.S9 DOSY ¹H NMR spectrum (recorded in CDCl₃) of a PLLA-*b*-PMMA (entry 3, Table 2) obtained in a "one-pot" process.

Fig.S10 GPC traces of PLLA and PLLA-b-PBzMA (entry 4, Table 2).

Fig.S11 ¹H NMR spectrum of PLLA-*b*-PBzMA (entry 4, Table 2).