Supporting Information

Guaiazulene Revisited: A New Material for Green-Processed Optoelectronics

David Bilger, a Kwang-Won Park, a Ali Abdel-Maksoud, b and Trisha L. Andrew a,c,*

a Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, United States
b Department of Electrical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
c Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States

*tandrew@umass.edu
Figure S1. 1H NMR (top) and 13C NMR (bottom) spectra of P1 in deuterated chloroform (CDCl$_3$).
Figure S2. DFT calculation of the HOMO-LUMO electronic structure of guaiazulene. The isopropyl group was omitted from the calculations to minimize computational cost.
Figure S3. TD-DFT calculations of azulene and guaiazulene-based trimers conducted using the CAM-B3LYP functional and a 6-311+G (2d, p) basis set.
Figure S4. Optical image of the reactor following a successful reactive vapor deposition (RVD). The black region consists of condensed polymer (P1). The brown region consists of condensed oxidant (FeCl₃).
Figure S5. LDI-MS of the soluble fractions of RVD films isolated from inside the reactor.