Synthesis and characterization of fully biobased polyesters with tunable branched architectures

Nejib Kasmi,1 Catherine Pinel,2 Denilson Da Silva Perez,3 Reiner Diden,1 Youssef Habibi1*

1Department of Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
2University Lyon, University Claude Bernard, CNRS, IRCELYON, UM5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
3Institut FCBA, InTechFibres, 38044 Grenoble, France

* Corresponding authors. Youssef Habibi, E-mail: Youssef.Habibi@list.lu

Supplementary Information

Carboxyl terminated
SucA/BTO(-COOH)
Figure S1: 1H NMR spectrum of SucA/BTO(-COOH) in DMSO-$_d$6

Figure S2: 13C NMR spectrum of SucA/BTO(-COOH) in DMSO-$_d$6
Figure S 3: COSY NMR spectrum of SucA/BTO(-COOH) in dms-o-d$_6$
Figure S 4: HSQC NMR spectrum of SucA/BTO(-COOH) in dmsO-d$_6$

Figure S 5: NMR spectrum of SucA/BTO(-COOH) in dmsO-d$_6$
Figure S 6: 1H NMR spectrum of SucA/HTO(-COOH) in dmso-d_6
Figure S7: 13C NMR spectrum of SucA/HTO(-COOH) in dmsO-d$_6$

Figure S8: 13C NMR spectrum of SucA/HTO(-COOH) in dmsO-d$_6$
Figure S 9: HSQC NMR spectrum of SucA/HTO(-COOH) in dmsO-d₆

Figure S 10: HMBC NMR spectrum of SucA/HTO(-COOH) in dmsO-d₆
AdiA/BTO(-COOH)

Figure S11: 1H NMR spectrum of AdiA/BTO(-COOH) in dmoso-d_6
Figure S 12: 13C NMR spectrum of AdiA/BTO(-COOH) in dmsO-d$_6$

Figure S 13: COSY NMR spectrum of AdiA/BTO(-COOH) in dmsO-d$_6$
Figure S 14: HSQC NMR spectrum of AdiA/BTO(-COOH) in dmsO-d$_6$

Figure S 15: HMBC NMR spectrum of AdiA/BTO(-COOH) in dmsO-d$_6$
Figure S 16: 1H NMR spectrum of AdiA/HTO(-COOH) in dmsO-d$_6$
Figure S 17: 13C spectrum of AdiA/HTO(-COOH) in dmso-d_6

Figure S 18: COSY NMR spectrum of AdiA/HTO(-COOH) in dmso-d_6
Figure S 19: HSQC NMR spectrum of AdiA/HTO(-COOH) in dmso-d$_6$

Figure S 20: HMBC NMR spectrum of AdiA/HTO(-COOH) in dmso-d$_6$
Figure S 21: 1H NMR spectrum of AzA/BTO(-COOH) in dms-o-d_6
Figure S 22: 13C NMR spectrum of AzeA/BTO(-COOH) in dmso-d_6

Figure S 23: COSY NMR spectrum of AzeA/BTO(-COOH) in dmso-d_6
Figure S 24: HSQC spectrum of AzeA/BTO(-COOH) in dms-o-d$_6$

Figure S 25: HMBC NMR spectrum of AzeA/BTO(-COOH) in dms-o-d$_6$
Figure S 26: 1H NMR spectrum of AzeA/HTO(-COOH) in dms-o-d$_6$
Figure S 27: 13C NMR spectrum of AzeA/HTO(-COOH) in dmso-d_6

Figure S 28: COSY NMR spectrum of AzeA/HTO(-COOH) in dmso-d_6
Figure S 29: HSQC spectrum of AzeA/HTO(-COOH) in dmso-d$_6$

Figure S 30: HMBC NMR spectrum of AzeA/HTO(-COOH) in dsmo-d$_6$
hydroxyl terminated

SucA/BTO(-OH)

Figure S 31: 1H NMR spectrum of SucA/BTO(-OH) in dmsO-d$_6$
Figure S 32: 13C NMR spectrum of SucA/BTO(-OH) in dms-o-d$_6$

Figure S 33: COSY NMR spectrum of SucA/BTO(-OH) in dms-o-d$_6$
Figure S 34: HSQC NMR spectrum of SucA/BTO(-OH) in dmso-d$_6$

Figure S 35: HMBC NMR spectrum of SucA/BTO(-OH) in dmso-d$_6$
Figure S 36: 1H NMR spectrum of SucA/HTO(-OH) in dmso-d_6
Figure S 37: 13C NMR spectrum of SucA/HTO(-OH) in dmso-d_6

Figure S 38: COSY NMR spectrum of SucA/HTO(-OH) in dmso-d_6
Figure S 39: HSQC NMR spectrum of SucA/HTO(-OH) in dmso-d$_6$

Figure S 40: HMBC NMR spectrum of SucA/HTO(-OH) in dmso-d$_6$
AdiA/BTO(-OH)

Figure S 41: 1H NMR spectrum of AdiA/BTO(-OH) in dmoso-d$_6$
Figure S 42: 13C NMR spectrum of AdiA/BTO(-OH) in dmso-d_6

Figure S 43: COSY NMR spectrum of AdiA/BTO(-OH) in dmso-d_6
Figure S 44: HSQC NMR spectrum of AdiA/BTO(-OH) in dmsO-d6

Figure S 45: HMBC NMR Spectrum of AdiA/BTO(-OH) in dmsO-d6
AdiA/HTO(-OH)

Figure S 46: 1H NMR spectrum of AdiA/HTO(-OH) in dsmo-d_6
Figure S 47: 13C NMR spectrum of Adi/HTO(-OH) in dmso-d_6

Figure S 48: COSY NMR spectrum of AdiA/HTO in dmso-d_6
Figure S 49: HSQC NMR spectrum of AdiA/HTO(-OH) in dmsO-d$_6$
Figure S 50: HMBC NMR spectrum of AdiA/HTO(-OH) in dmsO-d$_6$
Figure S51: 1H NMR spectrum of AzeA/BTO(-OH) in dmso-d_6
Figure S 52: 13C NMR spectrum of AzeA/BTO(-OH) in dms-O-d$_6$
Figure S 53: COSY NMR spectrum of AzeA/BTO(-OH) in dmsø-d$_6$

Figure S 54: HSQC NMR spectrum of AzeA/BTO(-OH) in dmsø-d$_6$
Figure S 55: HMBC NMR spectrum of AzeA/BTO(-OH) in dmso-d$_6$
Figure S 56: 1H NMR spectrum of AzeA/HTO(-OH) in dmsO-d$_6$
Figure S 57: 13C NMR spectrum of AzeA/HTO in dmso-d_6
Figure S58: COSY NMR spectrum of AzeA/HTO(-OH) in dmsos-d$_6$

Figure S 59: HSQC NMR spectrum of AzeA/HTO(-OH) in dmsos-d$_6$
Figure S 60: HMBC NMR spectrum of AzeA/HTO(-OH) in dmso-d$_6$
Table S1: 1H NMR chemical shifts of acid-ended branched polyesters in DMSO-d_6 (major peaks only). Ranges indicate regions where multiple peaks are found. (*: Chemical shifts read from HSQC; ** not observed)

<table>
<thead>
<tr>
<th>Compound</th>
<th>1'</th>
<th>2'</th>
<th>3</th>
<th>4</th>
<th>4'</th>
<th>5</th>
<th>6'</th>
<th>5'</th>
<th>6'</th>
<th>COOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SucA/BTO (-COOH)</td>
<td>4.15</td>
<td>5.03</td>
<td>1.88</td>
<td>4.05</td>
<td>2.48</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
<td>12.29</td>
</tr>
<tr>
<td>SucA/HTO (-COOH)</td>
<td>4.13</td>
<td>4.98</td>
<td>1.55</td>
<td>1.30</td>
<td>1.55</td>
<td>3.99</td>
<td>2.48</td>
<td>2.55</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>AdiA/BTO (-COOH)</td>
<td>4.23</td>
<td>5.08</td>
<td>1.88</td>
<td>4.04</td>
<td>2.21</td>
<td>2.29</td>
<td>1.51</td>
<td></td>
<td></td>
<td>12.01</td>
</tr>
<tr>
<td>AdiA/HTO (-COOH)</td>
<td>4.18</td>
<td>4.99</td>
<td>1.56</td>
<td>1.31</td>
<td>1.56</td>
<td>3.98</td>
<td>2.20</td>
<td>2.28</td>
<td>1.51</td>
<td>12.01</td>
</tr>
<tr>
<td>AzeA/BTO (-COOH)</td>
<td>4.23</td>
<td>5.08</td>
<td>1.87</td>
<td>4.03</td>
<td>2.18</td>
<td>2.25</td>
<td>1.49</td>
<td>1.25</td>
<td>11.95</td>
<td></td>
</tr>
<tr>
<td>AzeA/HTO (-COOH)</td>
<td>4.18</td>
<td>4.98</td>
<td>1.55</td>
<td>1.3</td>
<td>1.55</td>
<td>3.98</td>
<td>2.17</td>
<td>2.26</td>
<td>1.48</td>
<td>12.01</td>
</tr>
</tbody>
</table>

Table S2: 13C NMR chemical shifts of acid-ended branched polyesters in DMSO-d_6. Ranges indicate regions where multiple peaks are found. (** not observed)

<table>
<thead>
<tr>
<th>Compound</th>
<th>1'</th>
<th>2'</th>
<th>3</th>
<th>4</th>
<th>4'</th>
<th>5</th>
<th>6'</th>
<th>5'</th>
<th>6'</th>
<th>COOH</th>
<th>COOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SucA/BTO (-COOH)</td>
<td>64.91</td>
<td>69.13</td>
<td>29.70</td>
<td>60.74</td>
<td>29.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>173.82</td>
<td>171.8-172.5</td>
</tr>
<tr>
<td>SucA/HTO (-COOH)</td>
<td>65.1</td>
<td>71.5</td>
<td>28.2</td>
<td>21.6</td>
<td>30.0</td>
<td>64.4</td>
<td>29.06-29.15</td>
<td></td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>AdiA/BTO (-COOH)</td>
<td>63.6-69.0</td>
<td>64.4-72.5</td>
<td>29.80</td>
<td>59.7-63.5</td>
<td>33.4-33.9</td>
<td>24.0-24.6</td>
<td>174.73</td>
<td>172.5-173.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdiA/HTO (-COOH)</td>
<td>64.84</td>
<td>71.16</td>
<td>28.26</td>
<td>21.56</td>
<td>30.02</td>
<td>63.89</td>
<td>33.1-34.0</td>
<td>24.0-24.7</td>
<td>174.71</td>
<td>172.7-173.2</td>
<td></td>
</tr>
<tr>
<td>AzeA/BTO (-COOH)</td>
<td>61.6-69.1</td>
<td>64.1-72.5</td>
<td>29.80</td>
<td>59.9-61.9</td>
<td>33.77-34.0</td>
<td>24.84</td>
<td>28.7-28.85</td>
<td>174.92</td>
<td>172.7-173.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AzeA/HTO (-COOH)</td>
<td>62.8-68.5</td>
<td>67.7-74.8</td>
<td>30.09</td>
<td>21.64</td>
<td>28.34</td>
<td>63.84</td>
<td>33.77-34.1</td>
<td>24.9</td>
<td>28.8</td>
<td>174.92</td>
<td>172.8-173.4</td>
</tr>
</tbody>
</table>
Table S3: 1H NMR chemical shifts of OH-ended branched polyesters in DMSO-d_6. Ranges indicate regions where multiple peaks are found. (*: Chemical shifts read from HSQC; ** not observed; *** OH group signals are observed at 4.98 (m), 4.76 (m), 4.58(m), 4.54(t), 4.46(t), 4.40(t), 4.37(d), 4.34(t))

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>1'</th>
<th>2</th>
<th>2'</th>
<th>3</th>
<th>3'</th>
<th>4</th>
<th>4'</th>
<th>5</th>
<th>6'</th>
<th>6</th>
<th>6OH</th>
<th>*</th>
<th>$^{*'}$</th>
<th>$^{*''}$</th>
<th>$^{*'''}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SucA/BTO(-OH)</td>
<td>3.2</td>
<td>3.87</td>
<td>3.47</td>
<td>4.8</td>
<td>1.35</td>
<td>3.2</td>
<td>3.5</td>
<td>3.87</td>
<td>4.21</td>
<td>3.5</td>
<td>2.5</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SucA/HTO(-OH)</td>
<td>3.24</td>
<td>3.88</td>
<td>3.34</td>
<td>4.71</td>
<td>1.55</td>
<td>1.28</td>
<td>1.41</td>
<td>1.18</td>
<td>4.00</td>
<td>3.34</td>
<td>3.42</td>
<td>3.2-3.5</td>
<td>3.5</td>
<td>2.29</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>AdiA/BTO(-OH)</td>
<td>3.21</td>
<td>3.88</td>
<td>3.48</td>
<td>4.82</td>
<td>1.38</td>
<td>3.21</td>
<td>3.54</td>
<td>3.88</td>
<td>4.25</td>
<td>3.29</td>
<td>2.29</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdiA/HTO(-OH)</td>
<td>3.24</td>
<td>4.21</td>
<td>3.35</td>
<td>4.72</td>
<td>1.56</td>
<td>1.20</td>
<td>1.43</td>
<td>4.21</td>
<td>3.86</td>
<td>3.35</td>
<td>4.33</td>
<td>2.29</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AzeA/BTO(-OH)</td>
<td>3.90</td>
<td>3.46</td>
<td>4.8</td>
<td>3.79</td>
<td>5.20</td>
<td>4.0</td>
<td>4.1</td>
<td>3.6</td>
<td>5.0</td>
<td>1.45</td>
<td>2.27</td>
<td>1.51</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>1'</th>
<th>2</th>
<th>2'</th>
<th>3</th>
<th>3'</th>
<th>4</th>
<th>4'</th>
<th>5</th>
<th>6'</th>
<th>6</th>
<th>6OH</th>
<th>*</th>
<th>$^{*'}$</th>
<th>$^{*''}$</th>
<th>$^{*'''}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SucA/HTO(-OH)</td>
<td>56.9-</td>
<td>60.1-</td>
<td>64.6-</td>
<td>68.3-</td>
<td>29.2-</td>
<td>56.9-</td>
<td>60.1-</td>
<td>29.14</td>
<td>171.8-</td>
<td>172.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67.1</td>
<td>69.5</td>
<td>69.8</td>
<td>75.7</td>
<td>37.7</td>
<td>67.1</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdiA/BTO(-OH)</td>
<td>57.2-</td>
<td>60.2-</td>
<td>65.35-</td>
<td>68.58-</td>
<td>29.8-</td>
<td>57.2-</td>
<td>60.2-</td>
<td>33.65</td>
<td>24.38</td>
<td>172.9-</td>
<td>173.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.66</td>
<td>69.2</td>
<td>69.39</td>
<td>74.94</td>
<td>37.4</td>
<td>66.66</td>
<td>69.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AzeA/BTO(-OH)</td>
<td>68.1-</td>
<td>65-</td>
<td>68.0-</td>
<td>60.2-</td>
<td>60.2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172.8-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>68.7</td>
<td>69.3</td>
<td>75.2</td>
<td>61.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>173.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AzeA/HTO(-OH)</td>
<td>66.41-</td>
<td>66.6-</td>
<td>67.7-</td>
<td>71.2-</td>
<td>32.6-</td>
<td>21.65-</td>
<td>22.45</td>
<td>28.7</td>
<td>64.2-</td>
<td>33.78-</td>
<td>24.88-</td>
<td>28.5-</td>
<td>173.09-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.47</td>
<td>66.8</td>
<td>72</td>
<td>75.7</td>
<td>34.0</td>
<td></td>
</tr>
</tbody>
</table>

Table S4: 13C NMR chemical shifts of OH-ended branched polyesters in DMSO-d_6. Ranges indicate regions where multiple peaks are found.