Supplementary Information

Sequence-regulated vinyl polymers via iterative atom transfer radical additions and acyclic diene metathesis polymerization

Masato Miyajima,¹ Kotaro Satoh,^{1,2} and Masami Kamigaito^{*,1}

¹Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan ²Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan e-mail: kamigait@chembio.nagoya-u.ac.jp

Contents:

Fig. S1	S2
Fig. S2	····S3
Fig. S3	S3
Fig. S4	S4
Fig. 85	S5
Fig. S6	S5
Fig. S7	S6
Table S1	S6

Fig. S1. ¹H and ¹³C NMR spectra (CDCl₃, 25 °C) of **M1**.

Fig. S2. ¹H and ¹³C NMR spectra (CDCl₃, 25 °C) of M2.

Fig. S3. SEC curves of poly(M1) (A) and poly(M2) (B) before and after purification by preparative SEC.

Fig. S4. ¹³C NMR spectra (CDCl₃, 55 °C) of poly(M1) (A) and poly(M1)-H₂.

Fig. S5. ¹³C NMR spectra (CDCl₃, 55 °C) of poly(M2) (A) and poly(M2)-H₂.

Fig. S6. Hydrogenation of poly(M1) (A) and poly(M2) (B).

Fig. S7. MALDI-TOF-MS spectra of poly(M1)(A) and $poly(M1)-H_2(B)$.

Table S1. ADMET	poly	ymerization	of M1	under	various	conditions ⁴
-----------------	------	-------------	-------	-------	---------	-------------------------

Entry	[M] ₀	Catalyst	Temperature	e Pressure	Time	Conversion ^b	Isomerization ^b	<i>M</i> _n ^c	<i>M</i> _w ^c	$M_{\rm w}/M_{\rm n}^{c}$
1	bulk	G2	50 °C	1.01 x 10 ⁵ Pa(1 atm)	400 h	81%	26%	1000	1300	1.26
2	bulk	G2	50 °C	< 200 Pa (< 0.002 atm)	300 h	91%	22%	1900	3200	1.68
3	bulk	G2	100 °C	< 200 Pa (< 0.002 atm)	270 h	95%	25%	2700	5300	1.96
4	bulk	G2	120 °C	< 200 Pa (< 0.002 atm)	360 h	96%	32%	4000	9400	2.35
5	bulk	HG2	120 °C	< 200 Pa (< 0.002 atm)	360 h	99%	49%	4700	12000	2.52
6	bulk	G3	120 °C	< 200 Pa (< 0.002 atm)	360 h	98%	61%	2500	4900	1.94
7	1500	G2	50 °C	0.02 MPa (0.03 atm)	30 min	83%	>1%	1600	2800	1.75
8	1500	G2	50 °C	0.02 MPa (0.03 atm)	18 h	98%	9%	2900	9800	3.40

^{*a*} Polymerization condition: $[M1]_0/[Catalyst]_0 = 400$. ^{*b*} Determined by ¹H NMR. ^{*c*} Determined by SEC using polystyrene standards.