Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Phosphine-substituted Fe-Te clusters related to the active site of [FeFe]-H₂ases

Shuang Lü, ^a Hong-Li huang, ^b Ru-fen Zhang, ^b Chun-lin Ma, ^b Qian-Li Li, ^{*b} Jiao He, ^c Jun Yang, ^c

Ting Li,^c Yu-Long Li^{*c,d}

^a School of Pharmacy, Liaocheng University, Liaocheng 252059, P.R. China

^b Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell

Technology, College of Chemistry and Chemical Engineering, Liaocheng University,

Liaocheng, 252059, P. R.China

^cCollege of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China

^dChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, P.R. China

Contents

Figs. S1-S31. IR and NMR spectra for 1-6 .	page 2-17
Figs. S32-S35. UV-visible spectra of 1-6 recorded in CH ₂ Cl ₂ at 25 °C.	page 18-19
Fig. S36. Dependence of current heights of the reduction events for 1 and 2 on the cor	centration of
HOAc in CH ₃ CN.	page 20
Figure S37. Molecular structures of the compound B	page 20
Table S1. Crystal data and structure parameters for 1-anti, 2-anti, 2-syn and 4-6.	page 21

Tables S2-S7. Selected distance (Å) and angles (°) for 1-anti, 2-anti, 2-syn and 4-6. page 22-25

Figure S1. FT-IR (in CH₂Cl₂, 25°C) spectrum of **1**-*anti*. *Assignments:* $v_{CO} = 1985$, 1938, 1927 cm⁻¹.

Figure S2. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **1**-*anti*. *Assignments*: δ = 7.65-5.90 (m, 40H, 8C₆H₅) ppm.

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2* f1 (ppm)

Figure S3. ³¹P NMR (202 MHz, CDCl₃, 25 °C) spectrum of **1**-*anti*. *Assignments:* δ = 66.01 ppm.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S4. ¹³C NMR (126 MHz, CDCl₃, 25 °C) spectrum of **1**-*anti*. *Assignments:* δ = 216.7, 214.6 (2d, ²*J*_{P-C} = 7.6 Hz, PFe(CO)₂), 115.7-139.4 (m, C₆H₅) ppm.

Figure S5. FT-IR (in CH₂Cl₂, 25°C) spectrum of **1**-syn. Assignments: $v_{CO} = 1984$, 1937, 1925 cm⁻¹.

Figure S6. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **1**-syn. Assignments: $\delta = 7.89-5.91$ (m, 40H, 8C₆H₅) ppm.

Figure S7. ³¹P NMR (202 MHz, CDCl₃, 25 °C) spectrum of **1**-syn. Assignments: $\delta = 61.72$ ppm.

Figure S8. FT-IR (in CH₂Cl₂, 25°C) spectrum of **2**-anti. Assignments: $v_{CO} = 1987$, 1939, 1929 cm⁻¹.

$\begin{array}{c} 7.64\\ 6.64\\ 7.763\\ 7.64\\ 7.64\\ 7.65\\ 7.763\\ 7.65\\ 7.736\\ 7.736\\ 7.736\\ 7.736\\ 7.736\\ 6.64\\ 7.736\\ 6.64\\ 7.736\\ 6.66\\ 7.736\\ 6.66\\ 7.736\\ 6.66\\ 7.736\\ 6.66\\ 7.736\\ 6.66\\ 7.66\\ 6.66\\ 7.66\\ 6.66\\ 7.66\\ 6.66\\ 7.66\\ 6.66\\ 7.66$

Figure S9. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **2-***anti*. *Assīgnments:* δ = 7.64-5.78 (m, 38H, 6C₆H₅ + 2C₆H₄) ppm.

Figure S10. ³¹P NMR (202 MHz, CDCl₃, 25 °C) spectrum of **2-anti**. Assignments: $\delta = 65.71$ ppm.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S11. ¹³C NMR (126 MHz, CDCl₃, 25 °C) spectrum of **2-anti**. Assignments: δ = 216.6, 214.4 (2d, ²*J*_{P-C} = 6.8 Hz, PFe(CO)₂), 113.9-164.2 (m, C₆H₅ + C₆H₄) ppm.

Figure S12. FT-IR (in CH₂Cl₂, 25°C) spectrum of **2**-syn. Assignments: $v_{CO} = 1985$, 1936, 1926 cm⁻¹.

Figure S13. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **2**-syn in CDCl₃. Assignments: $\delta = 7.75-6.65$ (m, 38H, $6C_6H_5 + 2C_6H_4$) ppm.

Figure S14. ³¹P NMR (202 MHz, CDCl₃, 25 °C) spectrum of **2**-syn. Assignments: $\delta = 61.31$ ppm.

Assignments: $v_{CO} = 1975$, 1961, 1939, 1912 cm⁻¹.

Figure S16. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **3**. *Assignments:* δ = 7.97-6.45 (m, 40H, 8C₆H₅) ppm.

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 f1 (ppm)

Figure S17. ³¹P NMR (202 MHz, CDCl₃, 25 °C) spectrum of **3**. *Assignments:* δ = 63.81 ppm.

Figure S18. ¹³C NMR (126 MHz, CDCl₃, 25 °C) spectrum of **3**. *Assignments:* δ = 216.9, 216.0 (2d, ²*J*_{P-C} = 7.6 Hz, PFe(CO)₂), 115.7-139.4 (m, C₆H₅) ppm.

Figure S19. FT-IR (in CH₂Cl₂, 25°C) spectrum of **4**. Assignments: $v_{CO} = 1976$, 1963, 1939, 1915 cm⁻¹.

Figure S20. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **4**. *Assignments:* δ = 7.89-6.31 (m, 38H, 6C₆H₅ + 6C₆H₄) ppm.

Figure S22. ¹³C NMR (126 MHz, CDCl₃, 25 °C) spectrum of **4** (* Traces of hexane). Assignments: $\delta = 216.8$ (s, FeCO), 215.6, 211.3(2d, ${}^{2}J_{P-C} = 10.1$ Hz, PFe(CO)₂) ppm, 114.8-164.0 (m, C₆H₅ + C₆H₄).

Figure S23. FT-IR (in CH₂Cl₂, 25°C) spectrum of **5**. *Assignments:* $v_{CO} = 1985$, 1929 cm⁻¹.

Figure S24. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **5**. *Assignments:* δ = 7.79, 7.20, 7.02 (3s, 10H, 2C₆H₅), 1.72 (s, 18H, 6CH₃) ppm.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S26. ¹³C NMR (126 MHz, CDCl₃, 25 °C) spectrum of **5**. *Assignments:* δ = 214.0 (t, *J* = 21.4, Fe(CO)₂), 141.2, 128.2, 126.7, 109.0 (C₆H₅), 20.8 (t, *J*_{P-C} = 17.6Hz, PCH₃) ppm.

Figure S27. FT-IR (in CH₂Cl₂, 25°C) spectrum of **6**. *Assignments:* $v_{CO} = 1995$, 1938 cm⁻¹.

Figure S28. ¹H NMR (500 MHz, CDCl₃, 25 °C) spectrum of **6**. *Assignments:* δ = 7.69, 6.73 (2s, 8H, 2C₆H₄), 1.70 (s, 18H, 6CH₃) ppm.

ISO 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -2{ f1 (ppm)

Figure S29. ³¹P NMR (202 MHz, CDCl₃, 25 °C) spectrum of **6**. *Assignments:* δ = -3.47 ppm.

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} Figure S30. ¹³C NMR (126 MHz, CDCl₃, 25 °C) spectrum of **6**. Assignments: $\delta =$ 213.9 (t, J = 21.4, Fe(CO)₂), 162.8 (d, ¹ $J_{F-C} = 246$ Hz, *p*-C of C₆H₄Te), 142.8 (d, ³ $J_{F-C} =$ = 6.3 Hz, *o*-C of C₆H₄Te), 115.7 (d, ² $J_{F-C} = 20.2$ Hz, *m*-C of C₆H₄Te), 101.8 (d, ⁴ $J_{F-C} =$

3.8 Hz, *ipso*-C of C₆H₄Te), 20.8 (t, $J_{P-C} = 17.6$ Hz, PCH₃) ppm.

Figure S31. Slide of ³¹P NMR of **2-syn** in toluene (100 °C). (* *anti-/syn*-Fe₂(μ -TeC6H4-F-4)₂(CO)₅(Ph₃P)).

Figure S32 UV-visible spectra of **A** (black), **1-anti** (red) and **1-syn** (blue) recorded in CH_2Cl_2 at 25 °C.

Figure S33 UV-visible spectra of **B** (black), **2-anti** (red) and **2-syn** (blue) recorded in CH_2Cl_2 at 25 °C.

Figure S34 UV-visible spectra of **3** (black) and **4** (red) recorded in CH₂Cl₂ at 25 °C.

Figure S35 UV-visible spectra of **5** (black) and **6** (red) recorded in CH₂Cl₂ at 25 °C.

Figure S36 Dependence of current heights of the reduction events for **1** and **2** on the concentration of HOAc in CH₃CN

Figure S37. Molecular structures of compounds **B**-anti: (left) and **B**-syn (right) with thermal ellipsoids at 30% probability. Selected distance (Å) and angles (°) for **B**-anti: Fe(1)-Fe(2) 2.6268(17) Te(1)-Fe(1) 2.5443(14) Te(1)-Fe(2) 2.5466(14) Fe(1)-Te(1)-Fe(2) 62.13(4) Fe(2)-Te(2)-Fe(1) 61.87(4). For **B**-syn: Fe(1)-Fe(2) 2.5897(12) Te(1)-Fe(1) 2.5542(9) Te(1)-Fe(2) 2.5554(9) Fe(1)-Te(1)-Fe(2) 60.91(3) Fe(1)-Te(2)-Fe(2) 60.98(3)

compound	1-anti	2-anti	2-syn	4·CH ₂ Cl ₂	5	6
	$C_{52}H_{40}Fe_2O_4P_2$	$C_{52}H_{38}F_2Fe_2O_4$	$C_{52}H_{38}F_2Fe_2O_4$	$C_{79}H_{56}Cl_2F_6Fe_4$	$C_{20}H_{28}FeO_2P_2$	$C_{20}H_{26}F_2FeO_2P_2$
ivioi formula	Te ₂	P ₂ Te ₂	P ₂ Te ₂	O ₆ P ₂ Te ₆	Te ₂	Te ₂
Mol wt	1157.68	1193.66	1193.66	2337.08	673.41	709.40
Wavelength (Å)	0.71073	1.54178	0.71073	0.71073	0.71073	0.71073
Cryst syst	Trigonal	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P3(1)	P2(1)	P2(1)/n	P2(1)/c	P2(1)/c	P-1
a /Å	11.0760(11)	14.4916(10)	15.7523(13)	10.5984(9)	16.7672(15)	10.5443(8)
b/Å	11.0760(11)	21.8071(11)	18.9568(16)	28.117(3)	16.7707(15)	11.4210(9)
<i>c /</i> Å	34.329(3)	17.8631(12)	17.0727(14)	27.262(3)	9.2532(8)	12.3027(11)
lpha /deg	90	90	90	90	90	73.951(2)
β /deg	90	112.899(4)	108.237(3)	100.664(3)	104.480(4)	76.513(2)
γ∕deg	120	90	90	90	90	66.4360(10)
V∕/ Å ³	3647.2(6)	5200.2(6)	4842.1(7)	7983.7(13)	2171.1(10)	1292.38(18)
Z	3	4	4	4	4	2
D_o/gcm^{-3}	1.581	1.525	1.637	1.944	1.775	1.823
abs coeff/mm $^{-1}$	1.881	14.128	1.898	3.033	3.008	2.947
F(000)	1710	2344	2344	4448	1296	680
index ranges	-13≤ h ≤ 13	-17 ≤ h ≤ 14	-18≤ h ≤18	-12 ≤ h ≤ 11	-19 ≤ h ≤19	-12 ≤ h ≤12
	-13≤ k ≤13	-25 ≤ k ≤ 22	-22≤ k ≤17	-33 ≤ k ≤ 27	-16 ≤ k ≤19	-7 ≤ k ≤13
6 0	-40≤ I ≤34	-21 ≤ I ≤ 21	-20≤ I ≤ 19	-31 ≤ ≤ 32	-10≤ I ≤11	-13 ≤ ≤14
no. of refins	18484	34095	24398	14068	12345	6503
no. of indepretins	6887	13943	8538	40681	4431	44/1
Goodness of fit	1.037	1.034	1.018	1.041	1.062	1.064
R	0.0731	0.0579,	0.0565,	0.0522	0.0309	0.0391
R _w	0.1625	0.1351	0.1164	0.1413	0.0741	0.0796

Table S1. Crystal data and structure refinement parameters for 1-anti, 2-anti, 2-syn and 4-6.

 Table S2 Selected distances (Å) and angles (°) for 1-anti.

 1-anti

1-anii			
Te(1)-Fe(1)	2.559(3)	Fe(1)-C(1)	1.77(2)
Te(1)-Fe(2)	2.574(3)	Fe(1)-P(1)	2.269(6)
Te(2)-C(47)	2.146(10)	Fe(1)-Fe(2)	2.653(4)
Te(2)-Fe(2)	2.580(3)	Fe(2)-C(3)	1.760(19)
Te(2)-Fe(1)	2.597(3)	Fe(2)-C(4)	1.77(3)
Fe(1)-C(2)	1.733(18)	Fe(2)-P(2)	2.253(6)
C(2)-Fe(1)-C(1)	86.1(11)	C(3)-Fe(2)-C(4)	91.5(11)
C(2)-Fe(1)-P(1)	98.7(8)	C(3)-Fe(2)-P(2)	99.0(7)
C(1)-Fe(1)-P(1)	96.5(7)	C(4)-Fe(2)-P(2)	94.9(7)
C(2)-Fe(1)-Te(1)	91.9(9)	C(3)-Fe(2)-Te(1)	92.6(7)
C(1)-Fe(1)-Te(1)	159.5(7)	C(4)-Fe(2)-Te(1)	153.8(7)
P(1)-Fe(1)-Te(1)	103.96(18)	P(2)-Fe(2)-Te(1)	109.99(17)
C(2)-Fe(1)-Te(2)	153.3(8)	C(3)-Fe(2)-Te(2)	155.3(7)

C(1)-Fe(1)-Te(2)	90.8(7)	C(4)-Fe(2)-Te(2)	83.8(7)
P(1)-Fe(1)-Te(2)	107.92(17)	P(2)-Fe(2)-Te(2)	105.53(16)
Te(1)-Fe(1)-Te(2)	81.83(9)	Te(1)-Fe(2)-Te(2)	81.90(9)
C(2)-Fe(1)-Fe(2)	95.7(8)	C(3)-Fe(2)-Fe(1)	97.1(7)
C(1)-Fe(1)-Fe(2)	100.7(7)	C(4)-Fe(2)-Fe(1)	95.3(7)
P(1)-Fe(1)-Fe(2)	158.2(2)	P(2)-Fe(2)-Fe(1)	160.74(18)
Te(1)-Fe(1)-Fe(2)	59.14(9)	Te(1)-Fe(2)-Fe(1)	58.59(9)
Te(2)-Fe(1)-Fe(2)	58.83(9)	Te(2)-Fe(2)-Fe(1)	59.49(9)

Table S3 Selected distances (Å) and angles (°) for 2-anti.

2-anti			
Te(1)-Fe(1)	2.569(3)	Fe(1)-C(1)	1.765(18)
Te(1)-Fe(2)	2.560(3)	Fe(1)-C(2)	1.77(2)
Te(2)-Fe(2)	2.561(3)	Fe(1)-P(1)	2.244(5)
Te(2)-Fe(1)	2.582(3)	Fe(1)-Fe(2)	2.631(4)
Fe(2)-P(2)	2.224(5)	Fe(2)-C(3)	1.76(2)
Te(2)-Fe(2)	2.561(3)	Fe(2)-C(4)	1.80(2)
C(1)-Fe(1)-C(2)	95.7(9)	C(3)-Fe(2)-C(4)	94.8(9)
C(1)-Fe(1)-P(1)	94.8(5)	C(3)-Fe(2)-P(2)	95.6(6)
C(2)-Fe(1)-P(1)	92.8(7)	C(4)-Fe(2)-P(2)	95.6(8)
C(1)-Fe(1)-Te(1)	84.7(6)	C(3)-Fe(2)-Te(2)	156.3(6)
C(2)-Fe(1)-Te(1)	153.1(7)	C(4)-Fe(2)-Te(2)	90.0(6)
P(1)-Fe(1)-Te(1)	114.02(16)	P(2)-Fe(2)-Te(2)	107.00(15)
C(1)-Fe(1)-Te(2)	156.3(5)	C(3)-Fe(2)-Te(1)	84.9(6)
C(2)-Fe(1)-Te(2)	89.3(6)	C(4)-Fe(2)-Te(1)	153.0(8)
P(1)-Fe(1)-Te(2)	108.14(15)	P(2)-Fe(2)-Te(1)	111.37(18)
Te(1)-Fe(1)-Te(2)	80.58(8)	Te(2)-Fe(2)-Te(1)	80.44(8)
C(1)-Fe(1)-Fe(2)	97.4(5)	C(3)-Fe(2)-Fe(1)	97.4(6)
C(2)-Fe(1)-Fe(2)	94.1(7)	C(4)-Fe(2)-Fe(1)	94.3(7)
P(1)-Fe(1)-Fe(2)	165.40(18)	P(2)-Fe(2)-Fe(1)	162.95(18)
Te(1)-Fe(1)-Fe(2)	59.38(8)	Te(2)-Fe(2)-Fe(1)	59.07(8)
Te(2)-Fe(1)-Fe(2)	59.11(8)	Te(1)-Fe(2)-Fe(1)	59.13(8)

Table SI Selected distances (Λ) and angles (P) for 2 sur		
-1 and 0.4 objected distances (A) and angles (-1.10) Δ - 3 VI	Selected distances (Å) and angles (°)	for 2-svn .

2-syn			
Te(1)-Fe(1)	2.5759(9)	Fe(1)-C(2)	1.759(8)
Te(1)-Fe(2)	2.5856(10)	Fe(1)-C(1)	1.768(7)
Te(2)-C(11)	2.144(6)	Fe(1)-P(1)	2.2818(18)
Te(2)-Fe(1)	2.5882(9)	Fe(1)-Fe(2)	2.6516(12)
Te(2)-Fe(2)	2.5957(9)	Fe(2)-C(4)	1.749(7)
F(1)-C(14)	1.379(8)	Fe(2)-C(3)	1.764(8)
F(2)-C(8)	1.373(7)	Fe(2)-P(2)	2.2735(18)
C(2)-Fe(1)-C(1)	88.7(3)	C(4)-Fe(2)-C(3)	88.8(3)
C(2)-Fe(1)-P(1)	100.3(2)	C(4)-Fe(2)-P(2)	101.3(2)

101.9(2)	C(3)-Fe(2)-P(2)	100.2(2)
90.5(2)	C(4)-Fe(2)-Te(1)	93.5(2)
154.0(2)	C(3)-Fe(2)-Te(1)	157.0(2)
103.80(5)	P(2)-Fe(2)-Te(1)	101.68(5)
157.3(2)	C(4)-Fe(2)-Te(2)	154.4(2)
90.9(2)	C(3)-Fe(2)-Te(2)	88.4(2)
102.06(5)	P(2)-Fe(2)-Te(2)	104.19(5)
80.00(3)	Te(1)-Fe(2)-Te(2)	79.68(3)
98.0(2)	C(4)-Fe(2)-Fe(1)	96.2(2)
95.1(2)	C(3)-Fe(2)-Fe(1)	98.1(2)
155.20(6)	P(2)-Fe(2)-Fe(1)	154.75(6)
59.27(3)	Te(1)-Fe(2)-Fe(1)	58.91(3)
59.37(3)	Te(2)-Fe(2)-Fe(1)	59.10(3)
	101.9(2) 90.5(2) 154.0(2) 103.80(5) 157.3(2) 90.9(2) 102.06(5) 80.00(3) 98.0(2) 95.1(2) 155.20(6) 59.27(3) 59.37(3)	101.9(2) $C(3)-Fe(2)-P(2)$ $90.5(2)$ $C(4)-Fe(2)-Te(1)$ $154.0(2)$ $C(3)-Fe(2)-Te(1)$ $103.80(5)$ $P(2)-Fe(2)-Te(1)$ $157.3(2)$ $C(4)-Fe(2)-Te(2)$ $90.9(2)$ $C(3)-Fe(2)-Te(2)$ $102.06(5)$ $P(2)-Fe(2)-Te(2)$ $80.00(3)$ $Te(1)-Fe(2)-Te(2)$ $98.0(2)$ $C(4)-Fe(2)-Fe(1)$ $95.1(2)$ $C(3)-Fe(2)-Fe(1)$ $155.20(6)$ $P(2)-Fe(2)-Fe(1)$ $59.27(3)$ $Te(1)-Fe(2)-Fe(1)$ $59.37(3)$ $Te(2)-Fe(2)-Fe(1)$

Table S5 Selected distances (Å) and angles (°) for 4.

4			
Fe(1)-C(1)	1.735(10)	Fe(3)-C(4)	1.755(10)
Fe(1)-C(2)	1.748(11)	Fe(3)-Te(3)	2.5018(14)
Fe(1)-P(1)	2.244(3)	Fe(3)-Te(4)	2.5099(14)
Fe(1)-Te(1)	2.5230(14)	Fe(3)-Te(5)	2.5417(14)
Fe(1)-Te(2)	2.5731(13)	Fe(3)-Te(6)	2.5874(14)
Fe(1)-Fe(2)	2.6731(17)	Fe(3)-Fe(4)	2.6822(18)
Fe(2)-C(3)	1.765(10)	Fe(4)-C(5)	1.747(12)
Fe(2)-Te(4)	2.5007(13)	Fe(4)-C(6)	1.760(13)
Fe(2)-Te(3)	2.5174(14)	Fe(4)-P(2)	2.253(3)
Fe(2)-Te(1)	2.5537(13)	Fe(4)-Te(5)	2.5122(15)
Fe(2)-Te(2)	2.6009(13)	Fe(4)-Te(6)	2.5667(15)
Fe(2)-Fe(3)	2.9273(17)		
C(1)-Fe(1)-C(2)	94.2(4)	C(4)-Fe(3)-Te(3)	96.1(3)
C(1)-Fe(1)-P(1)	99.4(3)	C(4)-Fe(3)-Te(4)	95.7(4)
C(2)-Fe(1)-P(1)	92.8(3)	Te(3)-Fe(3)-Te(4)	108.04(5)
C(1)-Fe(1)-Te(1)	88.9(3)	C(4)-Fe(3)-Te(5)	91.7(3)
C(2)-Fe(1)-Te(1)	161.5(3)	Te(3)-Fe(3)-Te(5)	153.27(6)
P(1)-Fe(1)-Te(1)	104.74(8)	Te(4)-Fe(3)-Te(5)	96.52(5)
C(1)-Fe(1)-Te(2)	149.0(3)	C(4)-Fe(3)-Te(6)	160.2(4)
C(2)-Fe(1)-Te(2)	86.8(3)	Te(3)-Fe(3)-Te(6)	83.74(4)
P(1)-Fe(1)-Te(2)	111.49(8)	Te(4)-Fe(3)-Te(6)	103.24(5)
Te(1)-Fe(1)-Te(2)	81.25(4)	Te(5)-Fe(3)-Te(6)	80.44(4)
C(1)-Fe(1)-Fe(2)	90.4(3)	C(4)-Fe(3)-Fe(4)	102.2(3)
C(2)-Fe(1)-Fe(2)	102.9(3)	Te(3)-Fe(3)-Fe(4)	95.90(5)
P(1)-Fe(1)-Fe(2)	160.91(9)	Te(4)-Fe(3)-Fe(4)	148.34(6)
Te(1)-Fe(1)-Fe(2)	58.79(4)	Te(5)-Fe(3)-Fe(4)	57.41(4)
Te(2)-Fe(1)-Fe(2)	59.40(4)	Te(6)-Fe(3)-Fe(4)	58.26(4)
C(3)-Fe(2)-Te(4)	97.9(3)	C(4)-Fe(3)-Fe(2)	93.0(3)

C(3)-Fe(2)-Te(3)	96.4(3)	Te(3)-Fe(3)-Fe(2)	54.57(4)
Te(4)-Fe(2)-Te(3)	107.84(5)	Te(4)-Fe(3)-Fe(2)	54.11(4)
C(3)-Fe(2)-Te(1)	90.2(3)	Te(5)-Fe(3)-Fe(2)	150.57(6)
Te(4)-Fe(2)-Te(1)	151.96(6)	Te(6)-Fe(3)-Fe(2)	102.84(5)
Te(3)-Fe(2)-Te(1)	97.76(5)	Fe(4)-Fe(3)-Fe(2)	148.39(6)
C(3)-Fe(2)-Te(2)	161.0(3)	C(5)-Fe(4)-C(6)	92.3(5)
Te(4)-Fe(2)-Te(2)	83.84(4)	C(5)-Fe(4)-P(2)	98.7(3)
Te(3)-Fe(2)-Te(2)	101.02(5)	C(6)-Fe(4)-P(2)	91.3(3)
Te(1)-Fe(2)-Te(2)	80.14(4)	C(5)-Fe(4)-Te(5)	90.2(3)
C(3)-Fe(2)-Fe(1)	102.6(3)	C(6)-Fe(4)-Te(5)	163.0(3)
Te(4)-Fe(2)-Fe(1)	94.31(5)	P(2)-Fe(4)-Te(5)	104.97(9)
Te(3)-Fe(2)-Fe(1)	148.40(6)	C(5)-Fe(4)-Te(6)	147.3(3)
Te(1)-Fe(2)-Fe(1)	57.67(4)	C(6)-Fe(4)-Te(6)	87.4(3)
Te(2)-Fe(2)-Fe(1)	58.38(4)	P(2)-Fe(4)-Te(6)	114.01(9)
C(3)-Fe(2)-Fe(3)	95.2(3)	Te(5)-Fe(4)-Te(6)	81.40(4)
Te(4)-Fe(2)-Fe(3)	54.40(4)	C(5)-Fe(4)-Fe(3)	89.6(3)
Te(3)-Fe(2)-Fe(3)	54.07(4)	C(6)-Fe(4)-Fe(3)	104.7(3)
Te(1)-Fe(2)-Fe(3)	151.71(6)	P(2)-Fe(4)-Fe(3)	161.71(10)
Te(2)-Fe(2)-Fe(3)	101.05(5)	Te(5)-Fe(4)-Fe(3)	58.48(4)
Fe(1)-Fe(2)-Fe(3)	146.09(6)	Te(6)-Fe(4)-Fe(3)	59.02(4)

Table S6 Selected distances (Å) and angles (°) for **5**.

3			
Te(1)-Fe(1)	2.6456(6)	Fe(1)-C(2)	1.741(5)
Te(2)-Fe(1)	2.6440(7)	Fe(1)-C(1)	1.749(5)
Fe(1)-P(2)	2.2785(14)	Fe(1)-P(1)	2.2784(14)
C(2)-Fe(1)-C(1)	94.7(2)	C(2)-Fe(1)-Te(2)	176.64(16)
C(2)-Fe(1)-P(1)	88.89(18)	C(1)-Fe(1)-Te(2)	88.16(16)
C(1)-Fe(1)-P(1)	93.38(16)	P(1)-Fe(1)-Te(2)	92.79(4)
C(2)-Fe(1)-P(2)	90.50(18)	P(2)-Fe(1)-Te(2)	87.61(4)
C(1)-Fe(1)-P(2)	90.79(16)	C(2)-Fe(1)-Te(1)	93.96(15)
P(1)-Fe(1)-P(2)	175.82(5)	C(1)-Fe(1)-Te(1)	171.30(16)
Te(2)-Fe(1)-Te(1)	83.268(19)	P(1)-Fe(1)-Te(1)	85.62(4)
P(2)-Fe(1)-Te(1)	90.29(4)		

Table S7 Selected distances (Å) and angles (°) for $\mathbf{6}$.

6			
Fe(1)-C(1)	1.757(6)	Fe(1)-P(1)	2.2841(17)
Fe(1)-C(2)	1.762(7)	Fe(1)-Te(2)	2.6378(9)
Fe(1)-P(2)	2.2824(17)	Fe(1)-Te(1)	2.6489(8)
C(1)-Fe(1)-C(2)	94.5(3)	P(2)-Fe(1)-Te(2)	90.59(5)
C(1)-Fe(1)-P(2)	91.17(19)	P(1)-Fe(1)-Te(2)	87.57(5)

C(2)-Fe(1)-P(2)	89.57(19)	C(1)-Fe(1)-Te(1)	175.3(2)
C(1)-Fe(1)-P(1)	89.96(19)	C(2)-Fe(1)-Te(1)	90.12(19)
C(2)-Fe(1)-P(1)	92.13(19)	P(2)-Fe(1)-Te(1)	87.92(5)
P(2)-Fe(1)-P(1)	177.88(7)	P(1)-Fe(1)-Te(1)	90.81(5)
C(1)-Fe(1)-Te(2)	92.0(2)	Te(2)-Fe(1)-Te(1)	83.36(3)
C(2)-Fe(1)-Te(2)	173.46(19)	C(3)-Te(1)-Fe(1)	105.08(15)
C(9)-Te(2)-Fe(1)	107.02(16)		