Electronic Supplementary Material

Rational design of Co-S-P nanosheet arrays as bifunctional electrocatalysts for both ethanol oxidation reaction and hydrogen

evolution reaction

Shuang Sheng, Ke Ye^{*}, Linna Sha, Kai Zhu, Yinyi Gao, Jun Yan, Guiling Wang, Dianxue Cao^{*} *Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China*

^{*}Corresponding authors.

E-mail addresses: yeke@hrbeu.edu.cn (K. Ye); caodianxue@hrbeu.edu.cn (D. Cao).

Fig. S1. SEM images of bare carbon cloth (a) and CoS₂/CC electrode (b).

Fig. S2. Nitrogen adsorption-desorption isotherms of CoS₂ and Co-S-P.

Fig. S3. LSV curves of Co-S-P/CC electrode for OER, EOR and collected using various

contents of ethanol as an electrolyte.

Fig. S4. LSV polarization curves of the Co-S-P_{1.0}/CC, Co-S-P/CC, Co-S-P_{2.0} and CoP/CC

Fig. S5. (a) LSV polarization curves of the CoS_2/CC and Co-S-P/CC in 1.0 M KOH electrolyte. (b) The corresponding Tafel plots.

Fig. S6. Nyquist plots of the bare CC, CoS₂/CC, Co-S-P/CC catalysts for EOR process at 1.38 V vs. RHE.

Fig. S7. CV curves for (a) bare CC, (b) CoS_2/CC , (c) Co-S-P/CC and (d) Pt-C/CC electrodes in a potential range of 0.83~0.93 V vs. RHE with scan rates from 20 to 100 mV s⁻¹ upon EOR catalysis.

Fig. S8. (a) Chronoamperometric curves of Co-S-P/CC electrode at a potential of 1.5 V vs. RHE for 2 h. (b) 13 C NMR spectra of electrolyte before and after oxidation reaction.

Fig. S9. LSV polarization curves of the Co-S-P/CC electrode at a scan rate of 5 mV s⁻¹

in 1.0 M KOH with and without 1.0 M ethanol for HER.

Fig. S10. Nyquist plots of the bare CC, CoS_2/CC , Co-S-P/CC catalysts at an overpotential of 200 mV toward HER.

Fig. S11. CV curves for (a) bare CC, (b) CoS_2/CC , (c) Co-S-P/CC and (d) Pt-C/CC electrodes in a potential range of -0.1^{-0} V vs. RHE with various scan rates for HER catalysis.

Fig. S12. Full water splitting performance of the CC, CoS₂/CC and Co-S-P/CC in a twoelectrode system.

electrolyser.

Table S1. Comparison with the performance of electrocatalytic ethanol oxidationcatalysts reported in the previous literature

Catalysts	Electrolyte	Current density at 1.5 V vs. RHE (mA cm ⁻²)	Potential at 10 mA cm ⁻² (V)	Electrolyte product	Ref.
Perforated CoNi hydroxide nanosheets	1.0 M KOH with 1.0 M ethanol	57	<mark>1.39</mark>	acetic acid	1
NGr–NiO/ITO	0.5 M NaOH with 1.0 M ethanol	3	<mark>-</mark>	_	2
MgFe layered double hydroxide	1.0 M NaOH with 1.0 M ethanol	2.2	ł	-	3
NiAl layered double hydroxide	1.0 M NaOH with 1.0 M ethanol	40	<mark>1.72</mark>	Acetaldehy de acetic acid	4
NiFe layered double hydroxide	1.0 M KOH with 1.0 M ethanol	1.2	ł	-	5
NiFe LDH@MnO ₂ spheres	1.0 M KOH with 1.0 M ethanol	4	<mark>>1.70</mark>	_	5
Co-S-P/CC	1.0 M KOH with 1.0 M ethanol	70	<mark>1.38</mark>	acetic acid	This work

Table S2. Comparison with the performance of electrocatalytic HER catalystsreported in the previous literature

Catalysts	Electrolyte	Overpotential at	Tafel slope	Ref.
		10 mA cm ⁻²	(mV dec ⁻¹)	
PdCu Alloy Nanosheets	1.0 M KOH	106 mV	124	6
PdCu Alloy Nanoparticles	1.0 М КОН	182 mV	170	6
Ni_3S_2	1.0 M KOH	335 mV	97	7
CoNi ₂ S ₄ @CoS ₂ /NF	1.0 M KOH	173 mV	51	8
CoNi ₂ O ₄ @Co ₃ O ₄ /NF	1.0 M KOH	206 mV	92	8
NiS ₂ /CFC	1.0 M KOH	210 mV	114	9
Carbon Paper/Carbon Tubes/C-S Sheets	1.0 М КОН	190 mV	131	10
Co-S-P/CC	1.0 M KOH with 1.0 M ethanol	167 mV	86	This work

Reference

- W. Wang, Y. B. Zhu, Q. Wen, Y. Wang, J. Xia, C. Li, M. W. Chen, Y. Liu, H. Li, H. A. Wu and T. Zhai, Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation, *Adv. Mater.*, 2019, **31**, 1900528.
- A. A. Daryakenari, D. Hosseini, Y. L. Ho, T. Saito, A. Apostoluk, C. R. Müller and J. J. Delaunay, Single-step electrophoretic deposition of non-noble metal catalyst layer with low onset voltage for ethanol electro-oxidation, ACS Appl. Mater. Interfaces, 2016, 8, 15975-15984.
- 3. M. Shao, F. Ning, J. Zhao, M. Wei, D. G. Evans and X. Duan, Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation, *Adv. Funct. Mater.*, 2013, **23**, 3513-3518.
- 4. L. Xu, Z. Wang, X. Chen, Z. Qu, F. Li and W. Yang, Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation, *Electrochim. Acta*, 2018, **260**, 898-904.
- 5. Z. Jia, Y. Wang and T. Qi, Hierarchical Ni-Fe layered double hydroxide/MnO₂ sphere architecture as an efficient noble metal-free electrocatalyst for ethanol electro-oxidation in alkaline solution, *RSC Adv.*, 2015, **5**, 83314-83319.
- 6. X. Zhao, L. Dai, Q. Qin, F. Pei, C. Hu and N. Zheng, Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol, *Small*, 2017, **13**, 1602970
- N. Jiang, Q. Tang, M. Sheng, B. You, D. Jiang and Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS₂, and Ni₃S₂ nanoparticles, *Catal. Sci. Technol.*, 2016, 6, 1077-1084.
- 8. R. Huang, W. Chen, Y. Zhang, Z. Huang, H. Dai, Y. Zhou, Y. Wu and X. Lv, Welldesigned cobalt-nickel sulfide microspheres with unique peapod-like structure for overall water splitting, *J. Colloid Interface Sci.*, 2019, **556**, 401-410.
- 9. T. Wu, X. Zhu, G. Wang, Y. Zhang, H. Zhang and H. Zhao, Vapor-phase hydrothermal growth of single crystalline NiS₂ nanostructure film on carbon fiber cloth for electrocatalytic oxidation of alcohols to ketones and simultaneous H₂ evolution, *Nano Res.*, 2017, **11**, 1004-1017.
- 10. J. Wang, H. X. Zhong, Z. L. Wang, F. L. Meng and X. B. Zhang, Integrated threedimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water wplitting, *ACS Nano*, 2016, **10**, 2342-2348.