Electronic Supplementary Information

Controlled Oxygen Vacancies Engineering on In₂O_{3-x}/CeO_{2-y} nanotube for Highly

Selective and Efficient Electrocatalytic Nitrogen Reduction Reaction

Zengyao Wang¹, Wenzhi Fu¹, Jiangwen Liao², Juncai Dong², Peiyuan Zhuang¹, Ziyi

Cao¹, Zhuolin Ye¹, Jiangyue Shi¹, Mingxin Ye^{1*}

¹ Institute of Special Materials and Technology, Fudan University, Shanghai 200433,

China

² Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese

Academy of Science, Beijing 100049, China

E-mail: mxye@fudan.edu.cn

Figure S1. TGA curve of the catalyst In_1 -Ce₁ under the air atmosphere (the total flow rate was 20 mL/min).

Figure S2. SEM images of the catalyst CeO_2 (a) and catalyst In_2O_3 (b). (c) TEM image of the catalyst In_1-Ce_1 . SAED images of In_2-Ce_1 (d), In_1-Ce_1 (e) and In_1-Ce_2 (f).

Figure S3. HRTEM images of the catalyst In_2O_3 (a) and the catalyst CeO_2 (b). SAXD images of the catalyst In_2O_3 (c) and catalyst CeO_2 (d).

Element	At. No.	Line s.	Netto	Mass [%]	Mass Norm. [%]	Atom [%]	abs. error [%] (1 sigma)	abs. error [%] (2 sigma)	abs. error [%] (3 sigma)	rel. error [%] (1 sigma)	rel. error [%] (2 sigma)	rel. error [%] (3 sigma)
Oxygen	8	K-Serie	2131	12.24	47.65	87.86	2.31	4.62	6.93	18.87	37.74	56.61
Indium	49	L-Serie	1374	6.19	24.12	6.20	0.30	0.59	0.89	4.78	9.57	14.35
Cerium	58	L-Serie	852	7.25	28.24	5.95	0.38	0.75	1.13	5.17	10.34	15.51
Nitrogen	7	K-Serie	0	0.00	0.00	0.00	0.00	0.00	0.00	10.00	20.00	30.00
			Sum	25.68	100.00	100.00						

Figure S4. EDX spectrum of the In₁-Ce₁.

Figure S5. Raman spectra of In_1 -Ce₁, In_2O_3 and CeO₂.

Figure S6. The nitrogen adsorption-desorption isotherms of the three catalysts, In_2 -Ce₁, In_1 -Ce₁, In_1 -Ce₂ respectively.

Figure S7. The cyclic voltammetry curves of (a) In_1 -Ce₁ (b) In_1 -Ce₂ (c) In_2 -Ce₁ (d) the estimated C_{dl} values.

Figure S8. Photoluminescence spectra of the three catalysts.

Figure S9. WT-EXAFS of Ce of the prepared catalysts CeO₂, In₂Ce₁, In₁Ce₂ and In₁Ce₁.

Figure S10. O1s XPS spectra of the (a) CeO₂ (b) In₂O₃. Ce spectra of (c) CeO₂. In 3d spectra of the

(d) In_2O_3 .

Figure S11. The schematic illustration for the electrocatalytic NRR process.

Figure S12. The standard curve of the NH₄Cl solution with various concentration.

Figure S13. The linear sweep voltammetric curve of the catalyst In_1 -Ce₁ in (pH=13) KOH aqueous solution under Ar and N₂ atmosphere.

Figure S14. (a) The cycling test of the catalyst In_1 -Ce₁ at -0.3 V versus RHE. (b) UV-vis curves of the catalyst In_1 -Ce₁ corresponding to the cycling test.

Figure S15. The images of the In_1 -Ce₁ after the NRR (a) the SEM morphology. (b-c) the TEM images. (d) the HRTEM image.

Figure S16. (a) the XRD patterns of the catalyst In_1 -Ce₁ before and after the NRR. The XPS spectra of the In_1 -Ce₁ after NRR: (b) O 1s (c) In 3d of the In_2O_3 (d) Ce³⁺ and 3d of the Ce⁴⁺.

Figure S17. (a) the amount of NH_3 generated with different gas atmosphere after electrolysis at potential of -0.30 V under ambition condition. (b) the UV-vis curves of the catalyst In_1 -Ce₁ at different conditions.

Figure S18. NH₃ yields and FEs of In_1 -Ce₁ at the potential of -0.30 V with alternating 2h cycles between N₂-saturated electrolytes with a total of 12h.

Catalyst	Electrode	NH ₃ yield rate	FE(%)	Ref.
In ₁ -Ce ₁	0.1 M KOH	26.1µg h ⁻¹ mg _{cat1}	16.1	This work
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1M HCl	$23.21 \mu g \ h^{-1} \ mg_{cat1}$	10.16	1
MoS ₂ /CC	$0.1 \mathrm{~M~Na_2SO_4}$	$4.94\mu g\ h^{-1}\ mg_{cat,-1}$	1.17	2
a-Au/CeOx–RGO	0.1M HCl	$8.3\mu g~h^{-1}~mg_{cat1}$	10.10	3
Bi ₅ O ₇ Br	water	$23.46 \mu g \ h^{-1} \ mg_{cat1}$	2.3	4
PCN	0.1M HCl	$8.09 \; \mu g \; h^{-1} \; mg_{cat1}$	11.59	5
Au NRs	0.1 M KOH	$1.64 \ \mu g \ h^{-1} \ cm_{cat1}$	3.88	6
Ru SAs/N-C	$0.05 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	$120.9 \mu g \ h^{-1} \ mg_{cat1}$	29.6	7
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	$2.80 \mu gh^{-1}\ mg_{cat1}$	4.5	8
hollow Cr ₂ O ₃ microspheres	0.1M Na ₂ SO ₄	$25.3 \mu g h^{-1} \ mg_{cat1}$	6.78	9
TiO ₂ -rGO	$0.1 \mathrm{M} \mathrm{Na}_2 \mathrm{SO}_4$	$15.13 \mu gh^{-1} mg_{cat1}$	3.3	10
Mn ₃ O ₄ nanocube	$0.1 \mathrm{M} \mathrm{Na}_2 \mathrm{SO}_4$	$11.6\mu gh^{-1} mg_{cat1}$	3.0	11
carbon nitride	0.1 M HCl	$8.09 \mu g h^{-1} \ mg_{cat1}$	11.59	12
MoO ₃	0.1 M HCl	$29.43 \mu gh^{-1}\ mg_{cat1}$	1.9	13
defect-rich MoS ₂	$0.1 \mathrm{M} \mathrm{Na}_2 \mathrm{SO4}$	$29.28 \mu gh^{-1}\ mg_{cat1}$	8.34	14
BG-1	$0.05 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	9.8 μ g h ⁻¹ cm ⁻²	10.8	15
NCM	0.1 M HCl	$8 \ \mu g \ h^{-1} \ cm^{-2}$	5.2	16
CNS	0.25 M Li2SO ₄	97.18 μ g h ⁻¹ cm ⁻²	11.56	17
Rh NNs	0.1 M KOH	$23.88 \mu gh^{-1}\ mg_{cat1}$	0.217	18
AuHNCs	0.5 m LiClO_4	$3.9 \ \mu g \ h^{-1} \ cm^{-2}$	30.2	19

Table S1. Comparison of the NH_3 yield rate and FE for In_1 -Ce₁/CP with other NRR electrocatalysts at ambient condition

Reference

- [1]. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew Chem Int Ed Engl., 2018, 57, 6073-6076.
- [2]. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang,
 X. Sun, *Adv Mater*, 2018, **30**, 1800191-1800196.
- [3]. S. J. Li, D. Bao, M. M. Shi, B. R. Wulan, J. M. Yan, Q. Jiang, Adv Mater, 2017,

29, 1700001-1700006.

- [4]. S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J.
 Ye, *Adv Mater*, 2017, 29, 1701774-1701780.
- [5]. C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, G. Yu, Angew Chem Int Ed Engl, 2018, 57, 10246-10250.
- [6]. D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang, X. B. Zhang, *Adv Mater*, 2017, **29**, 1604799-1604783.
- [7]. Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv Mater, 2018, 4, 1803498-1803453.
- [8]. M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan, Q. Jiang, Advanced Energy Materials, 2018, 8, 1800124-1800429.
- [9]. Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li, X. Sun, ACS Catalysis, 2018, 8, 8540-8544.
- [10]. X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun, T. Li, *Journal of Materials Chemistry A*, 2018, 6, 17303-17306.
- [11]. X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi, X. Sun, Small, 2018, e1803111.
- [12]. C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, G. Yu, Angew Chem Int Ed Engl, 2018, 57, 10246-10250.
- [13]. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li, X. Sun, *Journal of Materials Chemistry A*, 2018, 6, 12974-12977.
- [14]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, Advanced Energy Materials 2018, 8, 1801357.

- [15]. Wang, H.; Wang, L.; Wang, Q.; Ye, S.; Sun, W.; Shao, Y.; Jiang, Z.; Qiao, Q.; Zhu, Y.; Song, P.; Li, D.; He, L.; Zhang, X.; Yuan, J.; Wu, T.; Ozin, G. A., Angew Chem Int Ed Engl 2018, 57 (38), 12360-12364.
- [16].Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A., Nano Energy 2018, 49, 316-323.
- [17]. Liu, H.-M.; Han, S.-H.; Zhao, Y.; Zhu, Y.-Y.; Tian, X.-L.; Zeng, J.-H.; Jiang, J.-X.; Xia, B. Y.; Chen, Y., *Journal of Materials Chemistry A* 2018, 6 (7), 3211-3217.
- [18].Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z., Energy & Environmental Science2018, 11 (1), 45-56.
- [19]. Yang S, D. J., Rui P, Dale K. Hensley, Peter V. Bonnesen, Liangbo L.; Harry M. Meyer III, B. G. S., 1,2 Adam J. Rondinone1, *Science Advance* 2018, 4, e1700336.