Electronic Supplemental Information

Morphology control of Cu and Cu$_2$O through electrodeposition on conducting polymer electrodes

Yan Chun Suna, Chun Yu Sunb, Zhong Xiang Chena, Peng Wanga, Hai Tao Wanga, Ming Zhu Yaoa,c, Song Wua and Ping Xu*b

aHeilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences /Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Haerbin 150070, P. R. China;
b MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
c Department of Food Science and Engineering, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China;

Email: sunyc2004@163.com (Y. C. Sun), pxu@hit.edu.cn (P. Xu)

Additional Figures

Fig. S1 The color of the potassium iodide-starch test paper immersed in the used electrolyte after 20 minutes.
Fig. S2 SEM images of Cu and Cu$_2$O particles electrochemically deposited on PANI surfaces under various applied electric fields (2, 4, 6, 8, and 10 V). Cu and Cu$_2$O particles are prepared by using copper sulfate and copper acetate as copper precursor, respectively.

Fig. S3 SEM images of Cu$_2$O particles electrochemically deposited on ITO surfaces from Cu(Ac)$_2$ concentration (a) 5 mM, (b) 10 mM, (c) 20 mM, (d) 50 mM, and (e) 100 mM. Applied voltage: 2 V, electrodeposition time: 10 min.
Fig. S4 TEM images of Cu$_2$O particles deposited on PANI surface from 50 mM Cu(Ac)$_2$ at a reaction time of 2 s. Applied voltage: 6 V.