Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

> Electronic Supplementary Material (ESI) for Materials Chemistry Frontier. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Chain-Length Effect on Binary Superlattices of Polymer-

Tethered Nanoparticles

Ke Wang,^{a,c} Fan Li,^a Seon-Mi Jin,^b Kui Wang,^a Di Tian,^a Mubashir Hussain,^a Jiangping Xu,^a

Lianbin Zhang,^{a,*} Yonggui Liao,^a Eunji Lee,^b Gi-Ra Yi,^{*c} Xiaolin Xie^a and Jintao Zhu^{*a}

^{a.} Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education,

School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST),

Wuhan 430074, China.

^{b.} School of Materials Science and Engineering, Gwangju Institute of Science and Technology

Gwangju 361005, Republic of Korea

^{c.} School of Chemical Engineering, Sungkyunkwan University

Suwon 16419, Republic of Korea

E-mail: zhanglianbin@hust.edu.cn (L. Zhang); yigira@g.skku.edu (G. Yi); jtzhu@mail.hust.edu.cn (J. Zhu);

Fig. S1 TEM images of the monolayer fabricated from AuNPs@PS with different core and various molecular weight

of PS ligand. The effective diameter (D_{eff}) was measured from the core to core between two adjacent AuNPs@PS.

Fig. S2 a) TEM image of BNSLs formed from 8 nm AuNPs@PS_{5k} and 15 nm AuNPs@PS_{12k}, and b) its FFT pattern.

Fig. S3 Low-magnification TEM images of BNSLs formed in *S*-*L* model. a-d) 3.5 nm AuNPs@PS_{2k} and 8 nm AuNPs@PS with various M_{w-PS} : a) PS_{5k}, b) PS_{12k}, c) PS_{20k}, and d) PS_{50k}. e-h) 3.5 nm AuNPs@PS_{5k} and 8 nm AuNPs@PS with various M_{w-PS} : e) PS_{5k}, f) PS_{12k}, g) PS_{20k}, and h) PS_{50k}. The TEM images with red and green frame showed the OVF-HCP structure and the disordered structure, respectively. Insets in a), b), e), f) and g) are the cartoons showing the crystal models of the BNSLs.

Fig. S4 Low-magnification TEM images of BNSLs formed in *S*-*L* model. a-d) 3.5 nm AuNPs@PS_{2k} and 15 nm AuNPs@PS with various M_{w-PS} : a) PS_{5k}, b) PS_{12k}, c) PS_{20k}, and d) PS_{50k}. e-h) 3.5 nm AuNPs@PS_{5k} and 15 nm AuNPs@PS with various M_{w-PS} : e) PS_{5k}, f) PS_{12k}, g) PS_{20k}, and h) PS_{50k}. The TEM images with red and green frame showed the OVF-HCP structure and the disordered structure, respectively. Insets in a), b), e), f) and g) are the cartoon showing the crystal models of the BNSLs.

Fig. S5 High-magnification TEM images of the assemblies formed by: a-c) 3.5 nm AuNPs@PS_{12k} and 8 nm AuNPs@PS with various M_{w-PS} : a) PS_{12k}, b) PS_{20k}, and c) PS_{50k}. d-f) 3.5 nm AuNPs@PS_{20k} and 8 nm AuNPs@PS with various M_{w-PS} : d) PS_{12k}, e) PS_{20k}, and f) PS_{50k}. g-i) 3.5 nm AuNPs@PS_{50k} and 8 nm AuNPs@PS with various M_{w-PS} : g) PS_{12k}, h) PS_{20k}, and i) PS_{50k}. Inset in a) is the TEM image of OVF-HCP structure. The TEM images with red and blue frame showed the binary phase-coexistence regions, and the macrophase separated structures, respectively. The dashed yellow lines indicate the phase boundary.

Fig. S6 High-magnification TEM images of the assemblies formed by: a-c) 3.5 nm AuNPs@PS_{12k} and 15 nm AuNPs@PS with various M_{w-PS} : a) PS_{12k}, b) PS_{20k}, and c) PS_{50k}. d-f) 3.5 nm AuNPs@PS_{20k} and 15 nm AuNPs@PS with various M_{w-PS} : d) PS_{12k}, e) PS_{20k}, and f) PS_{50k}. g-i) 3.5 nm AuNPs@PS_{50k} and 15 nm AuNPs@PS with various M_{w-PS} : g) PS_{12k}, h) PS_{20k}, and i) PS_{50k}. The TEM images with red and blue frame showed the binary phase-coexistence regions, and the macrophase separated structures, respectively. The dashed yellow lines indicate the phase boundary.