Supporting Information

Expeditious access of chromone analogues via a Michael addition-driven multicomponent reaction

Jie Lei, a,b Yong Li, a,b Liu-Jun He, a Ya-Fei Luo, a Dian-Yong Tang, a Wei Yan, b Hui-Kuan Lin, c Hong-yu Li, a,b Zhong-Zhu Chen, a Zhi-Gang Xu a

a College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
b Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
c Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Experimental</td>
<td>2</td>
</tr>
<tr>
<td>General procedures for compounds 5 and 6</td>
<td>2</td>
</tr>
<tr>
<td>General procedures for compounds 9</td>
<td>2</td>
</tr>
<tr>
<td>General procedures for compounds 19</td>
<td>3</td>
</tr>
<tr>
<td>General procedures for compounds 20</td>
<td>3</td>
</tr>
<tr>
<td>General procedures for compounds 21</td>
<td>3</td>
</tr>
<tr>
<td>General procedures for compounds 22</td>
<td>3</td>
</tr>
<tr>
<td>Gram scale for compound 9g</td>
<td>4</td>
</tr>
<tr>
<td>Electrostatic potential (ESP) calculations</td>
<td>5</td>
</tr>
<tr>
<td>Cell lines and culture and MTT assay</td>
<td>7</td>
</tr>
<tr>
<td>NMR Characterization Data and Figures of Products</td>
<td>9-62</td>
</tr>
<tr>
<td>X-ray of Compounds 6g and 9a</td>
<td>63</td>
</tr>
</tbody>
</table>
General Experimental

1H and 13C NMR were recorded on a Bruker 400 spectrometer. 1H NMR data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), relative intensity. 13C NMR data are reported as follows: chemical shift in ppm (δ). LC/MS analyses were performed on a Shimadzu-2020 LC-MS instrument using the following conditions: Shim-pack VP-ODS C18 column (reverse phase, 150 x 4.6 mm); a linear gradient from 10% water and 90% acetonitrile to 75% acetonitrile and 25% water over 6.0 min; flow rate of 0.5 mL/min; UV photodiode array detection from 200 to 400 nm. High-resolution mass spectra (HRMS) were recorded on Thermo Scientific Exactive Plus System. The products were purified by Biotage Isolera™ Spektra Systems and hexane/EtOAc solvent systems. All reagents and solvents were obtained from commercial sources and used without further purification.

General procedures for compounds 5 and 6.

A solution of acid (0.3 mmol), isocyanide (0.3 mmol), amine (0.3 mmol) and aldehyde (0.3 mmol) was stirred in 2,2,2-trifluoroethanol (TFE, 2.0 mL) for 2 h. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na$_2$CO$_3$ and brine. The organic layer was dried over MgSO$_4$ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product.

General procedures for compound 9.

A solution of trimethylsilyl azide (0.3 mmol), isocyanide (0.3 mmol), amine (0.3 mmol) and aldehyde (0.3 mmol) was stirred in TFE, 2.0 mL for 2 h. The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na$_2$CO$_3$ and brine. The organic layer was dried over MgSO$_4$ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product.
General procedure for compound 19

In a solution of compound 9 (0.2 mmol) in DCM (3.0 mL), [bis(trifluoroacetoxy)iodo]benzene (PIFA, 0.2 mmol) and trifluoroacetic acid (TFA, 0.2 mmol) were added and stirred at room temperature for 6 h. When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na₂CO₃ and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted products 19a-c.

General procedure for compound 20

In a solution of compound 9b (0.2 mmol) in EtOH (3.0 mL), hydroxylamine hydrochloride (0.2 mmol) was added and stirred under reflux overnight. When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na₂CO₃ and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product 20 in 78% yield.

General procedure for compound 21

In a solution of compound 9i (0.2 mmol) in AcOH (3.0 mL), 3-amino-5-methylpyrazole (0.2 mmol) was added and stirred under reflux for 2 h. When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na₂CO₃ and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product 21 in 83% yield.

General procedure for compound 22

In a solution of compound 9i (0.2 mmol) in EtOH (3.0 mL), guanidine hydrochloride (0.2 mmol) and EtONa (0.4 mmol) were added and stirred under reflux for 16 h. When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. Na₂CO₃ and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a
gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product 22 in 84% yield.

Gram scale for compound 9g

![Diagram of the synthesis of compound 9g](image)

Scheme S1. Gram scale for compound 9g.

The mixture of 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (3.0 mmol) and tert-butyl amine (3.0 mmol) was stirred in TFE, 10.0 mL under room temperature for 10 min. Then trimethylsilyl azide (3.0 mmol) and tert-octylisocyanide (3.0 mmol) were added dropwise, respectively. When the addition was completed, the reaction was stirred under room temperature for 6 h. When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (100.0 mL), washed with sat. Na₂CO₃ and brine. The organic layer was dried over MgSO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford 9g in yield of 80%.
Electrostatic potential (ESP) calculations

Geometry optimization and electrostatic potential (ESP) calculations for compounds 13 and 14 are performed and no much more difference was found on the calculation of the molecular ESP energy surfaces.

Figure 1. The electrostatic potentials (ESPs) are mapped onto the electron density surface. Red is more electropositive (cationic) while blue is lower (relatively polar).
Table S1. The electron negativity calculation of the corresponding iminium ion.

<table>
<thead>
<tr>
<th>entry</th>
<th>structure</th>
<th>electron negativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cell lines and culture

The human tumor cells MCF-7, Hela, A549, HCT116, BxPC3 and PC-3 were obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). The MCF-7, Hela, HCT116 and BxPC3 cells were cultured in high-glucose DMEM (Hyclone, SH30022.01, USA) medium supplemented with 10% fetal bovine serum (FBS, Gibco, 10099, Australia origin). The A549 and PC3 cells were cultured with the Ham's F-12K (Kaighn's) Medium (GIBCO, 21127022, USA) supplemented with 10% FBS. The cells were cultured in the incubator at the 37°C and 5% CO2 with humidified atmosphere.

MTT assay

The effect of compound 9g to the human tumor cells viability were measured by 3-(4,5-dimethyl-2-thiazoly)-2,5-diphenyl-2-H-tetrazolium bromide (MTT, Beyotime, ST316, Shanghai, China) assay. The tumor cells were counted and seeded into the 96-well plate containing 100 µL complete medium, the MCF-7 Hela, A549, HCT116, BxPC-3 and PC-3 with a density 4 × 10³ cells per well and the other cells with a density 1 × 10³ cells per well. After incubation for 24 h, added another 100 µL complete medium containing 10 µM compounds and incubated another 48 h. To further measured the IC₅₀ of compound 10 h, tumor cells were incubated with various concentrations (0, 1.25, 2.5, 5, 10 µM) of compound 10 h for 48 h. After that, 20 µL MTT (5 mg/mL) was added to each well and incubated another 4 h. After incubation, removed the medium and added 200 µL DMSO into each well to dissolve the formazan product. The absorbance was measured at 570 nm (Bio-Tek, Winooski, VT, USA) and the inhibition values of compounds or IC₅₀ values were analyzed by GraphPad Prism 8. (Positive control sample paclitaxel was only measured in HCT116 with IC₅₀ = 0.14 ± 0.05 µM)
Table S2. Screening and antiproliferative viability of small molecular inhibitors in different human tumor cells.

(Inhibition values%) 10 µM concentration of compounds was used for the following cell lines.

<table>
<thead>
<tr>
<th>Entry</th>
<th>name</th>
<th>MCF-7</th>
<th>Hela</th>
<th>A549</th>
<th>HCT116</th>
<th>BxPC3</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>27.918</td>
<td>41.605</td>
<td>39.685</td>
<td>35.576</td>
<td>43.799</td>
<td>27.28</td>
</tr>
<tr>
<td>2</td>
<td>6b</td>
<td>21.659</td>
<td>30.985</td>
<td>34.847</td>
<td>35.944</td>
<td>29.906</td>
<td>31.533</td>
</tr>
<tr>
<td>4</td>
<td>6d</td>
<td>26.998</td>
<td>27.822</td>
<td>30.784</td>
<td>21.73</td>
<td>25.245</td>
<td>23.511</td>
</tr>
<tr>
<td>6</td>
<td>6f</td>
<td>13.342</td>
<td>15.816</td>
<td>30.578</td>
<td>25.798</td>
<td>18.347</td>
<td>2.938</td>
</tr>
<tr>
<td>7</td>
<td>6g</td>
<td>31.121</td>
<td>24.851</td>
<td>25.863</td>
<td>18.918</td>
<td>18.497</td>
<td>14.804</td>
</tr>
<tr>
<td>8</td>
<td>6h</td>
<td>13.445</td>
<td>10.586</td>
<td>29.172</td>
<td>22.039</td>
<td>11.298</td>
<td>11.532</td>
</tr>
<tr>
<td>10</td>
<td>6j</td>
<td>40.007</td>
<td>38.685</td>
<td>46.352</td>
<td>39.988</td>
<td>41.553</td>
<td>36.117</td>
</tr>
<tr>
<td>11</td>
<td>6k</td>
<td>47.252</td>
<td>51.938</td>
<td>38.198</td>
<td>54.834</td>
<td>44.365</td>
<td>50.007</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>23.754</td>
<td>42.302</td>
<td>43.53</td>
<td>30.337</td>
<td>38.152</td>
<td>33.862</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>22.576</td>
<td>35.103</td>
<td>27.086</td>
<td>33.013</td>
<td>20.634</td>
<td>11.201</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>27.104</td>
<td>29.434</td>
<td>23.295</td>
<td>40.069</td>
<td>22.302</td>
<td>20.12</td>
</tr>
<tr>
<td>16</td>
<td>9a</td>
<td>35.37</td>
<td>16.388</td>
<td>8.78</td>
<td>19.464</td>
<td>20.414</td>
<td>34.435</td>
</tr>
<tr>
<td>17</td>
<td>9b</td>
<td>24.529</td>
<td>22.853</td>
<td>14.485</td>
<td>19.241</td>
<td>17.703</td>
<td>33.267</td>
</tr>
<tr>
<td>18</td>
<td>9c</td>
<td>57.704</td>
<td>56.052</td>
<td>52.986</td>
<td>49.005</td>
<td>49.953</td>
<td>54.504</td>
</tr>
<tr>
<td>20</td>
<td>9e</td>
<td>26.954</td>
<td>31.715</td>
<td>37.402</td>
<td>33.244</td>
<td>26.219</td>
<td>20.471</td>
</tr>
<tr>
<td>21</td>
<td>9f</td>
<td>52.648</td>
<td>60.043</td>
<td>55.349</td>
<td>60.712</td>
<td>55.387</td>
<td>58.472</td>
</tr>
<tr>
<td>22</td>
<td>9g</td>
<td>35.345</td>
<td>77.513</td>
<td>75.598</td>
<td>75.427</td>
<td>89.023</td>
<td>90.791</td>
</tr>
<tr>
<td>26</td>
<td>9k</td>
<td>13.935</td>
<td>25.868</td>
<td>27.651</td>
<td>20.918</td>
<td>33.649</td>
<td>13.536</td>
</tr>
<tr>
<td>27</td>
<td>9l</td>
<td>11.229</td>
<td>28.965</td>
<td>33.109</td>
<td>30.716</td>
<td>34.165</td>
<td>23.522</td>
</tr>
</tbody>
</table>
NMR Characterization Data and Figures of Products

N-(2,6-dimethylphenyl)-2-(N-(2,6-dimethylphenyl)-2-(4-nitrophenyl)acetamido)-2-(4-oxo-4H-chromen-3-yl)acetamide

5a white solid, 29% (EA/Hex = 20%, Rf = 0.35), 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (d, $J = 8.0$ Hz, 1H), 8.08 (t, $J = 7.6$ Hz, 2H), 7.97 (s, 1H), 7.84 (d, $J = 2.6$ Hz, 1H), 7.65 (t, $J = 7.5$ Hz, 1H), 7.37 (dt, $J = 14.3$, 6.9 Hz, 2H), 7.20 (t, $J = 7.0$ Hz, 2H), 7.18 – 7.08 (m, 2H), 7.08 – 6.96 (m, 3H), 6.92 (d, $J = 4.4$ Hz, 1H), 6.64 (d, $J = 5.3$ Hz, 1H), 3.48 (dt, $J = 15.0$, 12.3 Hz, 2H), 2.47 (s, 3H), 2.12 (s, 6H), 1.85 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 175.67, 171.29, 167.98, 158.28, 155.60, 147.03, 141.89, 138.72, 138.30, 137.01, 135.40, 134.15, 133.46, 130.40, 129.42, 129.25, 129.14, 128.17, 127.31, 126.19, 125.75, 123.42, 123.18, 118.25, 117.17, 54.95, 41.25, 18.76, 18.38. HRMS (ESI) m/z calcd for C$_{35}$H$_{32}$N$_3$O$_6$ (M+H)$^+$ 590.2286, found 590.2286.

(Z)-N-(2,6-dimethylphenyl)-3-(((2,6-dimethylphenyl)amino)methylene)-N-(2-(4-nitrophenyl)acetyl)-4-oxochromane-2-carboxamide

6a light yellow solid, 57% (EA/Hex = 20%, Rf = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 11.49 (d, $J = 12.5$ Hz, 1H), 7.93 (dd, $J = 8.5$, 4.9 Hz, 2H), 7.88 (dd, $J = 5.5$, 2.2 Hz, 1H), 7.40 (dd, $J = 11.0$, 4.5 Hz, 1H), 7.24 (d, $J = 5.8$ Hz, 1H), 7.16 (dt, $J = 7.3$, 4.6 Hz, 1H), 7.13 – 7.06 (m, 4H), 7.06 – 6.94 (m, 5H), 6.49 (s, 1H), 3.58 (q, $J = 15.8$ Hz, 2H), 2.28 (s, 6H), 2.01 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 181.71, 173.07, 172.59, 159.32, 150.07, 147.25, 140.20, 137.78, 136.74, 135.73, 134.76, 131.39, 130.33, 129.65, 129.43, 129.19, 126.35, 123.56, 122.48, 121.58, 116.85, 97.45, 78.78, 43.39, 18.73, 17.90. HRMS (ESI) m/z calcd for C$_{35}$H$_{32}$N$_3$O$_6$ (M+H)$^+$ 590.2286, found 590.2285.
(Z)-3-((tert-butylamino)methylene)-N-(2,6-dimethylphenyl)-N-(2-(4 nitrophenyl)-acetyl)-4-oxochromane-2-carboxamide

6b, light yellow solid, 74% (EA/Hex = 20%, Rf = 0.3), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.39 (d, \(J = 12.9\) Hz, 1H), 8.18 – 8.04 (m, 2H), 7.81 (d, \(J = 7.7\) Hz, 1H), 7.35 (dd, \(J = 10.4, 4.9\) Hz, 1H), 7.28 – 7.22 (m, 1H), 7.24 – 7.13 (m, 3H), 7.11 (d, \(J = 6.9\) Hz, 2H), 6.99 – 6.91 (m, 2H), 6.25 (s, 1H), 3.65 (d, \(J = 11.0\) Hz, 2H), 1.99 (s, 6H), 1.27 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 180.41, 173.30, 172.38, 158.93, 148.53, 147.30, 140.53, 136.70, 135.88, 134.16, 130.63, 129.60, 129.50, 129.23, 126.57, 125.95, 121.40, 116.62, 95.11, 79.10, 52.75, 43.52, 29.99, 17.99. HRMS (ESI) m/z calcd for C\(_{31}\)H\(_{32}\)N\(_3\)O\(_6\)\(^+\) (M+H\(^+\)) 542.2286 found 542.2285.

(Z)-3-((tert-butylamino)methylene)-N-(2-(2,4-dichlorophenyl)acetyl)-N-(2,6-dimethylphenyl)-4-oxochromane-2-carboxamide

6c light green solid, 65% (EA/Hex = 20%, Rf = 0.3), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.43 (d, \(J = 13.4\) Hz, 1H), 7.79 (dd, \(J = 7.9, 1.4\) Hz, 1H), 7.38 (d, \(J = 2.1\) Hz, 1H), 7.36 – 7.28 (m, 1H), 7.22 – 7.15 (m, 2H), 7.10 (dd, \(J = 8.3, 6.9\) Hz, 3H), 7.01 (d, \(J = 8.2\) Hz, 1H), 6.97 – 6.88 (m, 2H), 6.43 (s, 1H), 3.50 (t, \(J = 11.2\) Hz, 2H), 2.16 (s, 3H), 2.08 (s, 3H), 1.26 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 180.36, 173.30, 171.81, 159.11, 148.89, 136.62, 135.82, 135.62, 135.35, 134.10, 134.03, 132.48, 130.41, 129.39, 127.16, 125.95, 122.83, 121.18, 116.51, 95.20, 79.22, 52.73, 41.56, 29.95, 17.97, 17.84. HRMS (ESI) m/z calcd for C\(_{31}\)H\(_{31}\)N\(_2\)O\(_4\)\(^+\) (M+H\(^+\)) 565.1655, found 565.1663.

(Z)-6-bromo-3-((tert-butylamino)methylene)-N-(2,6-dimethylphenyl)-N-(2-(4-fluorophenyl)acetyl)-4-oxochromane-2-carboxamide

6d light green solid, 61% (EA/Hex = 20%, Rf = 0.3), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.44 (d, \(J = 13.5\) Hz, 1H), 7.87 (d, \(J = 2.5\) Hz, 1H), 7.38 (dd, \(J = 8.7, 2.5\) Hz, 1H), 7.19
(dd, J = 14.5, 7.2 Hz, 2H), 7.07 (d, J = 7.6 Hz, 2H), 6.97 – 6.87 (m, 4H), 6.81 (d, J = 8.7 Hz, 1H), 6.51 (s, 1H), 3.43 – 3.33 (m, 2H), 1.98 (s, 3H), 1.90 (s, 3H), 1.26 (s, 9H).

13C NMR (100 MHz, CDCl$_3$) δ 178.81, 173.54, 173.26, 163.34, 160.89, 158.12, 149.22, 136.71, 136.48, 135.59, 131.13, 129.40, 129.03, 128.60, 124.30, 118.53, 115.44, 113.70, 94.92, 79.27, 52.88, 42.64, 29.91, 17.85, 17.73. HRMS (ESI) m/z calcd for C$_{31}$H$_{21}$BrFN$_2$O$_4$+ (M+H)$^+$ 593.1446, found 593.1452.

(Z)-6-bromo-N-(2-(4-bromophenyl)acetyl)-3-((tert-butylamino)methylene)-N-(2,6-dimethylphenyl)-4-oxochromane-2-carboxamide

6e light green solid, 73% (EA/Hex = 20%, R_f = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 10.43 (d, J = 13.6 Hz, 1H), 7.87 (d, J = 2.5 Hz, 1H), 7.40 – 7.35 (m, 3H), 7.18 (dt, J = 10.7, 5.3 Hz, 2H), 7.07 (d, J = 7.5 Hz, 2H), 6.82 (dd, J = 12.6, 8.6 Hz, 3H), 6.48 (s, 1H), 3.37 (t, J = 11.3 Hz, 2H), 1.99 (s, 3H), 1.91 (s, 3H), 1.26 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 178.80, 173.22, 173.16, 158.09, 149.18, 136.68, 136.49, 135.84, 135.57, 131.77, 131.55, 131.24, 129.44, 129.06, 128.60, 124.29, 121.50, 118.52, 113.72, 94.87, 79.27, 52.89, 42.85, 29.91, 17.88, 17.76. HRMS (ESI) m/z calcd for C$_{31}$H$_{31}$Br$_2$N$_2$O$_4$+ (M+H)$^+$ 655.0625, found 655.0629.

(Z)-3-((tert-butylamino)methylene)-N-(1-(4-chlorophenyl)cyclopropane-1-carbonyl)-N-(2,6-dimethylphenyl)-4-oxochromane-2-carboxamide

6f light green solid, 83% (EA/Hex = 20%, R_f = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 10.45 (d, J = 13.4 Hz, 1H), 7.75 (dd, J = 7.8, 1.6 Hz, 1H), 7.32 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 7.07 – 6.95 (m, 2H), 6.97 – 6.87 (m, 4H), 6.68 (d, J = 7.3 Hz, 1H), 6.62 (d, J = 8.3 Hz, 2H), 6.05 (s, 1H), 1.92 (s, 2H), 1.91 – 1.82 (m, 1H), 1.55 – 1.49 (m, 1H), 1.37 (s, 9H), 1.23 – 1.13 (m, 1H), 0.82 (ddd, J = 9.4, 7.2, 3.9 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 180.52, 177.01, 158.74, 148.86, 137.36, 136.73,
136.61, 135.01, 133.93, 132.67, 128.82, 128.65, 128.46, 127.97, 125.93, 123.13, 121.35, 117.04, 95.91, 79.48, 52.80, 32.33, 30.09, 18.26, 18.06, 17.71. HRMS (ESI) m/z calcd for C_{33}H_{34}ClN_{2}O_{4}^{+} (M+H)^{+} 557.2202, found 557.2201.

(Z)-N-(2,6-dimethylphenyl)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-N-(2-(4-nitrophenyl)acetyl)-4-oxochromane-2-carboxamide

6g light yellow solid, 72% (EA/Hex = 20%, Rf = 0.3), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.37 (d, \(J = 12.7\) Hz, 1H), 8.12 (d, \(J = 8.6\) Hz, 2H), 7.82 (d, \(J = 7.7\) Hz, 1H), 7.37 (t, \(J = 7.7\) Hz, 1H). 7.31 (s, 1H), 7.22 (t, \(J = 8.9\) Hz, 3H), 7.10 (d, \(J = 7.6\) Hz, 2H), 7.04-6.87 (m, 2H), 6.29 (s, 1H), 3.69 (s, 2H), 2.48 (s, 1H), 1.98 (s, 6H), 1.59 (s, 3H), 1.55 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 181.13, 173.19, 172.38, 159.03, 148.48, 147.28, 140.47, 136.63, 135.95, 135.69, 134.49, 130.64, 129.63, 129.46, 129.27, 126.14, 123.55, 122.60, 121.48, 116.78, 96.44, 84.79, 78.79, 73.55, 43.57, 31.28, 30.99, 17.96. HRMS (ESI) m/z calcd for C_{32}H_{30}N_{3}O_{6}^{+} (M+H)^{+} 552.2129, found 552.2130. CCDC 1852172.

(Z)-N-(2,6-dimethylphenyl)-N-isobutyryl-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxochromane-2-carboxamide

6h white solid, 59% (EA/Hex = 20%, Rf = 0.3), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.42 (d, \(J = 12.6\) Hz, 1H), 7.81 (d, \(J = 7.7\) Hz, 1H), 7.48 (d, \(J = 12.7\) Hz, 1H), 7.42 - 7.30 (m, 1H), 7.17 - 7.09 (m, 1H), 7.05 (t, \(J = 5.9\) Hz, 2H), 6.96 (dd, \(J = 14.0\), 7.5 Hz, 2H), 6.54 (s, 1H), 2.58 (s, 1H), 2.46 (dd, \(J = 12.8\), 6.4 Hz, 1H), 2.03 (d, \(J = 18.7\) Hz, 6H), 1.60 (d, \(J = 16.8\) Hz, 6H), 1.04 (dd, \(J = 8.7\), 3.2 Hz, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 181.28, 180.70, 173.85, 159.40, 149.10, 136.65, 136.33, 135.81, 134.39, 129.16, 128.91, 126.06, 122.76, 121.29, 116.94, 96.99, 84.72, 79.35, 73.75, 51.20, 34.36, 31.59, 30.95, 19.91, 19.34. HRMS (ESI) m/z calcd for C_{28}H_{31}N_{2}O_{6}^{+} (M+H)^{+} 459.2278, found 459.2277.
(Z)-N-(2,6-dimethylphenyl)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-N-(2-nitrobenzoyl)-4-oxochromane-2-carboxamide

6i light yellow solid, 68% (EA/Hex = 20%, Rf = 0.3), 1H NMR (400 MHz, CDCl3) δ 10.20 (d, J = 12.6 Hz, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.73 (dd, J = 7.7, 1.4 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H), 7.43 (dd, J = 9.8, 5.8 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.28 – 7.17 (m, 2H), 6.92 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.53 (d, J = 12.4 Hz, 1H), 5.16 (s, 1H), 2.54 (s, 3H), 2.33 (s, 3H), 1.60 (s, 3H), 1.49 (s, 3H).

13C NMR (100 MHz, CDCl3) δ 181.06, 170.78, 167.70, 147.63, 144.83, 137.42, 136.98, 134.82, 134.25, 134.04, 129.94, 129.69, 129.44, 126.12, 124.80, 122.80, 121.54, 116.69, 95.01, 84.41, 73.95, 60.42, 51.34, 31.43, 30.92, 18.50, 18.44. HRMS (ESI) m/z calcd for C31H28N3O6+(M+H)+ 538.1973, found 538.1973.

(Z)-6-bromo-N-(1-(4-chlorophenyl)cyclopropane-1-carbonyl)-N-(2,6-dimethylphenyl)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxochromane-2-carboxamide

6j light green solid, 79% (EA/Hex = 20%, Rf = 0.3), 1H NMR (400 MHz, CDCl3) δ 10.00 (d, J = 12.3 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.95 (t, J = 8.8 Hz, 4H), 6.84 – 6.76 (m, 2H), 6.69 (d, J = 8.2 Hz, 2H), 5.83 (s, 1H), 3.48 (dd, J = 13.2, 6.7 Hz, 1H), 2.10 (s, 1H), 1.94 (s, 3H), 1.88 – 1.81 (m, 1H), 1.56 – 1.51 (m, 2H), 1.35 (d, J = 6.5 Hz, 3H), 1.26 (d, J = 6.6 Hz, 3H), 0.90 – 0.82 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 179.03, 177.02, 157.72, 151.14, 137.21, 136.81, 134.97, 132.81, 132.34, 130.89, 129.40, 128.98, 128.58, 128.05, 127.97, 124.50, 118.93, 113.84, 94.92, 79.00, 50.80, 32.51, 29.68, 24.09, 23.35, 18.37, 17.70. HRMS (ESI) m/z calcd for C34H31BrClN2O6+(M+H)+ 645.1150, found 645.1153.

(Z)-N-(2-(2,4-dichlorophenyl)acetyl)-N-(2,6-dimethylphenyl)-3-((isopropylamino)methylene)-4-oxochromane-2-carboxamide
6k light green solid, 70% (EA/Hex = 20%, Rf = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 10.06 (dd, $J = 12.4, 7.7$ Hz, 1H), 7.79 (d, $J = 8.0$ Hz, 1H), 7.39 (d, $J = 1.8$ Hz, 1H), 7.34 (t, $J = 7.7$ Hz, 1H), 7.23 – 7.15 (m, 2H), 7.10 (d, $J = 7.5$ Hz, 2H), 7.02 (d, $J = 8.2$ Hz, 1H), 6.97 – 6.90 (m, 2H), 6.85 (d, $J = 10.3$ Hz, 1H), 6.37 (s, 1H), 3.53 (q, $J = 17.9$ Hz, 2H), 3.40 (td, $J = 13.4, 6.7$ Hz, 1H), 2.14 (s, 3H), 2.10 (s, 3H), 1.27 (d, $J = 6.5$ Hz, 3H), 1.19 (d, $J = 6.5$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 186.81, 179.48, 178.27, 165.52, 157.35, 143.09, 142.06, 141.64, 140.47, 138.78, 136.85, 135.73, 135.39, 133.56, 132.30, 129.04, 127.51, 122.84, 85.36, 56.90, 48.16, 30.50, 29.62, 24.29, 24.18. HRMS (ESI) m/z calcd for C$_{30}$H$_{29}$Cl$_2$N$_2$O$_4$+ (M+H)$^+$ 551.1499, found 551.1509.

(Z)-N-(2-(4-bromophenyl)acetyl)-N-(2,6-dimethylphenyl)-3-((isopropylamino)methylene)-4-oxochromane-2-carboxamide

6l white solid, 75% (EA/Hex = 20%, Rf = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 10.02 (dd, $J = 12.8, 7.4$ Hz, 1H), 7.78 (dd, $J = 7.8, 1.6$ Hz, 1H), 7.41 – 7.36 (m, 2H), 7.33 (ddd, $J = 8.2, 7.3, 1.8$ Hz, 1H), 7.21 – 7.15 (m, 1H), 7.06 (d, $J = 7.6$ Hz, 2H), 6.97 – 6.90 (m, 2H), 6.90 – 6.84 (m, 2H), 6.79 (d, $J = 12.5$ Hz, 1H), 6.29 (s, 1H), 3.52 – 3.40 (m, 2H), 3.39 – 3.27 (m, 1H), 1.97 (s, 3H), 1.94 (s, 3H), 1.23 (d, $J = 6.5$ Hz, 3H), 1.19 (d, $J = 6.5$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 180.47, 173.39, 159.06, 150.71, 136.88, 135.89, 134.11, 132.08, 131.54, 131.23, 129.31, 128.98, 125.97, 122.71, 121.43, 116.62, 95.18, 78.99, 50.47, 43.05, 24.00, 23.40, 17.83. HRMS (ESI) m/z calcd for C$_{30}$H$_{30}$BrN$_2$O$_4$+ (M+H)$^+$ 561.1383, found 561.1286.

N-(4-chlorophenyl)-N-(2-((2,6-dimethylphenyl)amino)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethyl)-2-(4-nitrophenyl)acetamide

5m white solid, 82% (EA/Hex = 20%, Rf = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (s, 1H), 8.11 (dd, $J = 8.3, 1.4$ Hz, 1H), 8.03 (d, $J = 8.7$ Hz, 2H), 7.97 (s, 1H), 7.68 – 7.61 (m, 1H), 7.41 – 7.34 (m, 2H), 7.18 (d, $J = 8.5$ Hz, 4H), 7.09 (dd, $J = 8.7, 6.0$ Hz, 2H),
N-(2,6-dimethylphenyl)-2-(N-(3,5-dimethylphenyl)-2-(4-nitrophenyl)acetamido)-2-(4-oxo-4H-chromen-3-yl)acetamide

5n white solid, 87% (EA/Hex = 30%, Rf = 0.25), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.32 (s, 1H), 8.12 – 8.04 (m, 2H), 8.00 (s, 1H), 7.65 – 7.56 (m, 1H), 7.32 (dd, \(J = 13.0, 8.1\) Hz, 2H), 7.14 (d, \(J = 8.5\) Hz, 2H), 7.05 (dt, \(J = 14.0, 6.0\) Hz, 3H), 6.81 (s, 1H), 6.63 (s, 1H), 6.45 (s, 1H), 3.54 (s, 2H), 2.18 (s, 11H), \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.08, 170.54, 168.15, 157.85, 155.75, 146.64, 142.82, 138.87, 135.42, 133.98, 133.46, 130.38, 130.04, 128.15, 127.37, 125.70, 125.47, 123.56, 123.27, 118.38, 118.15, 55.12, 41.70, 18.51. HRMS (ESI) m/z calcd for C\(_{35}\)H\(_{32}\)N\(_3\)O\(_6\)\(^{+}\) (M+H)\(^{+}\) 590.2286, found 590.2286.

2-((2,6-dimethylphenyl)amino)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethyl benzo[d]-[1,3]dioxole-5-carboxylate

7 white solid, 67% (EA/Hex = 20%, Rf = 0.35), \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.38 (d, \(J = 0.6\) Hz, 1H), 8.26 (dd, \(J = 8.0, 1.7\) Hz, 2H), 7.79 – 7.69 (m, 2H), 7.53 (t, \(J = 5.2\) Hz, 2H), 7.46 (dd, \(J = 11.4, 4.3\) Hz, 1H), 7.09 – 6.98 (m, 3H), 6.85 (d, \(J = 8.2\) Hz, 1H), 6.50 (s, 1H), 6.04 (s, 2H), 2.18 (s, 6H), \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 176.50, 165.74, 164.57, 156.30, 155.35, 152.22, 147.87, 135.48, 134.39, 133.09, 128.07, 127.25, 125.97, 125.82, 123.72, 122.97, 119.60, 118.38, 109.68, 108.16,
HRMS (ESI) m/z calcd for C_{27}H_{22}NO_7^+ (M+H)^+ 472.1391, found 472.1388.

(Z)-3-((tert-butylamino)methylene)-2-(1-(2,6-dimethylphenyl)-1H-tetrazol-5-yl)chroman-4-one

9a yellow solid, 82% (EA/Hex = 20%, R_f = 0.2), ^1^H NMR (400 MHz, CDCl_3) δ 10.54 (d, J = 13.0 Hz, 1H), 7.70 (dd, J = 7.8, 1.5 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.23 (dd, J = 6.8, 1.3 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 6.95 (ddd, J = 7.8, 7.3, 1.0 Hz, 1H), 6.85 (d, J = 13.3 Hz, 1H), 6.56 (dd, J = 8.2, 0.7 Hz, 1H), 6.23 (d, J = 0.5 Hz, 1H), 1.85 (s, 3H), 1.79 (s, 3H), 1.27 (s, 9H). ^1^C NMR (100 MHz, CDCl_3) δ 179.13, 156.28, 155.91, 147.53, 135.75, 135.64, 133.79, 130.83, 128.77, 128.67, 125.95, 122.29, 122.00, 116.63, 94.89, 71.89, 52.99, 29.88, 17.46, 17.29. HRMS (ESI) m/z calcd for C_{23}H_{26}N_5O_2^+ (M+H)^+ 404.2081, found 404.2081. CCDC 1962910.

(Z)-2-(1-(tert-butyl)-1H-tetrazol-5-yl)-3-((tert-butylamino)methylene)chroman-4-one

9b yellow solid, 93% (EA/Hex = 20%, R_f = 0.2), ^1^H NMR (400 MHz, CDCl_3) δ 10.56 (d, J = 13.1 Hz, 1H), 7.91 (dd, J = 7.8, 1.7 Hz, 1H), 7.27 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.01 (td, J = 7.8, 1.0 Hz, 1H), 6.83 – 6.73 (m, 2H), 6.38 (s, 1H), 1.81 (s, 9H), 1.27 (s, 9H). ^1^C NMR (100 MHz, CDCl_3) δ 180.30, 155.33, 153.41, 146.91, 133.59, 126.53, 124.12, 122.52, 116.75, 96.70, 71.61, 62.61, 52.74, 29.97. HRMS (ESI) m/z calcd for C_{19}H_{26}N_5O_2^+ (M+H)^+ 356.2081, found 356.2086.

(Z)-3-((tert-butylamino)methylene)-2-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)chroman-4-one
9c yellow solid, 85% (EA/Hex = 20%, Rf = 0.2), 1H NMR (400 MHz, CDCl$_3$) δ 10.54 (d, J = 13.0 Hz, 1H), 7.93 (dt, J = 7.8, 1.9 Hz, 1H), 7.34 – 7.25 (m, 1H), 7.08 – 6.95 (m, 1H), 6.77 (dd, J = 7.8, 5.1 Hz, 2H), 6.46 (s, 1H), 2.06 (q, J = 15.2 Hz, 2H), 1.88 (d, J = 7.8 Hz, 6H), 1.25 (s, 9H), 0.78 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 180.43, 155.71, 153.42, 146.79, 133.59, 126.49, 124.06, 122.46, 116.83, 96.74, 71.59, 65.94, 53.94, 52.72, 31.73, 30.76. HRMS (ESI) m/z calcd for C$_{23}$H$_{34}$N$_{5}$O$_{2}$ (M+H)$^+$ 412.2707, found 412.2704.

(Z)-6-bromo-3-((tert-butylamino)methylene)-2-(1-cyclohexyl-1H-tetrazol-5-yl)-chroman-4-one

9d yellow solid, 88% (EA/Hex = 20%, Rf = 0.2), 1H NMR (400 MHz, CDCl$_3$) δ 10.67 (d, J = 13.1 Hz, 1H), 8.01 (d, J = 2.5 Hz, 1H), 7.42 (dd, J = 8.6, 2.5 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.64 (d, J = 13.3 Hz, 1H), 6.42 – 6.38 (m, 1H), 4.58 (tt, J = 11.4, 4.0 Hz, 1H), 2.11 – 1.97 (m, 4H), 1.92 (d, J = 9.7 Hz, 4H), 1.74 (s, 1H), 1.37 – 1.29 (m, 3H), 1.26 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 178.40, 155.16, 152.28, 147.19, 136.43, 129.25, 125.27, 118.69, 115.47, 95.52, 71.91, 59.07, 53.14, 33.21, 32.79, 29.86, 25.26, 24.74. HRMS (ESI) m/z calcd for C$_{21}$H$_{27}$BrN$_{5}$O$_{2}$ (M+H)$^+$ 460.1343, found 460.1341.

(Z)-6-bromo-3-((tert-butylamino)methylene)-2-(1-(2,6-dimethylphenyl)-1H-tetrazol-5-yl)chroman-4-one

9e yellow solid, 79% (EA/Hex = 20%, Rf = 0.2), 1H NMR (400 MHz, CDCl$_3$) δ 10.57 (d, J = 13.1 Hz, 1H), 7.75 (s, 1H), 7.29 (dd, J = 15.1, 8.1 Hz, 2H), 7.11 (d, J = 7.5 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.86 (d, J = 13.4 Hz, 1H), 6.49 (d, J = 8.7 Hz, 1H), 6.27 (s, 1H), 1.82 (s, 3H), 1.78 (s, 3H), 1.27 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 177.42, 155.77, 155.04, 148.03, 136.21, 135.67, 130.88, 128.86, 128.77, 128.55, 123.59, 118.46, 114.59, 109.75, 94.33, 71.94, 53.25, 29.83, 17.48, 17.24. HRMS (ESI) m/z calcd for C$_{23}$H$_{25}$BrN$_{5}$O$_{2}$ (M+H)$^+$ 482.1186, found 482.1184.
(Z)-6-bromo-2-(1-(tert-butyl)-1H-tetrazol-5-yl)-3-((tert-butylamino)methylene)chroman-4-one

9f yellow solid, 86% (EA/Hex = 20%, R_f = 0.2), ^1H NMR (400 MHz, CDCl_3) δ 10.58 (d, J = 13.2 Hz, 1H), 8.03 (s, 1H), 7.36 (d, J = 8.6 Hz, 1H), 6.83 (d, J = 13.3 Hz, 1H), 6.66 (d, J = 8.7 Hz, 1H), 6.36 (s, 1H), 1.82 (s, 9H), 1.30 (s, 9H). ^13C NMR (100 MHz, CDCl_3) δ 178.78, 154.12, 153.17, 147.29, 136.15, 129.31, 125.61, 118.67, 115.30, 96.17, 71.65, 62.62, 53.00, 29.94. HRMS (ESI) m/z calcd for C_{19}H_{25}BrN_5O_2+ (M+H)^+ 434.1186, found 434.1181.

(Z)-6-bromo-3-((tert-butylamino)methylene)-2-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)chroman-4-one

9g yellow solid, 86% (EA/Hex = 20%, R_f = 0.2), ^1H NMR (400 MHz, CDCl_3) δ 10.57 (d, J = 13.3 Hz, 1H), 8.05 (d, J = 2.5 Hz, 1H), 7.43 – 7.33 (m, 1H), 6.79 (d, J = 13.3 Hz, 1H), 6.67 (d, J = 8.7 Hz, 1H), 6.45 (s, 1H), 2.07 (dd, J = 33.2, 15.2 Hz, 2H), 1.90 (d, J = 8.3 Hz, 6H), 1.28 (s, 9H), 0.80 (s, 9H). ^13C NMR (100 MHz, CDCl_3) δ 178.92, 154.50, 153.18, 147.10, 136.15, 129.29, 125.57, 118.74, 115.24, 96.23, 71.64, 65.94, 54.05, 52.96, 31.76, 30.78, 30.40, 29.92. HRMS (ESI) m/z calcd for C_{23}H_{33}BrN_5O_2+ (M+H)^+ 490.1812, found 490.1811.

(Z)-2-(1-(tert-butyl)-1H-tetrazol-5-yl)-3-((isopropylamino)methylene)chroman-4-one

9h yellow solid, 78% (EA/Hex = 20%, R_f = 0.2), ^1H NMR (400 MHz, CDCl_3) δ 10.22 (d, J = 7.3 Hz, 1H), 7.92 (dd, J = 7.8, 1.5 Hz, 1H), 7.35 – 7.26 (m, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 6.69 (d, J = 12.9 Hz, 1H), 6.39 (s, 1H), 3.43 (dq, J = 13.3, 6.6 Hz, 1H), 1.82 (s, 9H), 1.24 (dd, J = 6.5, 3.5 Hz, 6H). ^13C NMR (100 MHz, CDCl_3) δ 180.49, 155.51, 153.28, 149.14,
133.67, 126.58, 124.03, 122.56, 116.78, 96.69, 71.49, 62.60, 50.66, 30.02, 23.86, 23.54. HRMS (ESI) m/z calcd for C₁₈H₂₃N₅O₂⁺ (M+H)⁺ 342.1925, found 342.1922.

(Z)-3-((isopropylamino)methylene)-2-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)chroman-4-one

9i yellow solid, 78% (EA/Hex = 20%, Rf = 0.2), ¹H NMR (400 MHz, CDCl₃) δ 10.18 (dd, J = 12.4, 7.5 Hz, 1H), 7.92 (dd, J = 7.8, 1.6 Hz, 1H), 7.29 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H), 7.02 (td, J = 7.8, 0.9 Hz, 1H), 6.76 (dd, J = 8.2, 0.6 Hz, 1H), 6.67 (d, J = 12.9 Hz, 1H), 6.46 (s, 1H), 3.40 (dq, J = 13.3, 6.6 Hz, 1H), 2.07 (dd, J = 38.9, 15.1 Hz, 2H), 1.88 (d, J = 17.3 Hz, 6H), 1.20 (dd, J = 6.5, 4.9 Hz, 6H), 0.79 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 180.57, 155.77, 153.35, 149.07, 133.64, 126.52, 124.00, 122.47, 116.84, 96.75, 71.47, 66.01, 53.88, 50.63, 31.72, 30.76, 30.51, 30.16, 23.84, 23.50. HRMS (ESI) m/z calcd for C₂₂H₃₂N₅O₂⁺ (M+H)⁺ 398.2551, found 398.2555.

(Z)-2-(1-cyclohexyl-1H-tetrazol-5-yl)-3-((isopropylamino)methylene)chroman-4-one

9j yellow solid, 74% (EA/Hex = 20%, Rf = 0.2), ¹H NMR (400 MHz, CDCl₃) δ 10.35 – 10.19 (m, 1H), 7.91 (dd, J = 7.8, 1.7 Hz, 1H), 7.35 (ddd, J = 8.2, 7.4, 1.7 Hz, 1H), 7.13 – 7.03 (m, 1H), 6.88 – 6.78 (m, 1H), 6.50 (d, J = 12.9 Hz, 1H), 6.44 (s, 1H), 4.63 (tt, J = 11.6, 3.8 Hz, 1H), 3.39 (td, J = 13.3, 6.6 Hz, 1H), 2.05 (dd, J = 11.9, 3.2 Hz, 2H), 1.92 (dd, J = 10.7, 8.6 Hz, 3H), 1.72 (s, 2H), 1.32 (ddd, J = 10.0, 9.3, 6.7 Hz, 3H), 1.21 (dd, J = 7.9, 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.14, 156.51, 152.44, 148.96, 133.97, 126.51, 123.68, 122.74, 116.79, 96.05, 71.75, 59.06, 50.84, 33.24, 32.70, 25.23, 24.77, 23.66. HRMS (ESI) m/z calcd for C₂₀H₂₆N₅O₂⁺ (M+H)⁺ 368.2081, found 368.2085.

(Z)-2-(1-(2,6-dimethylphenyl)-1H-tetrazol-5-yl)-3-((isopropylamino)methylene) chroman-4-one
9k yellow solid, 88% (EA/Hex = 20%, Rf = 0.2), 1H NMR (400 MHz, CDCl₃) δ 10.19 – 10.00 (m, 1H), 7.69 (dd, J = 7.8, 1.7 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.09 (d, J = 7.3 Hz, 1H), 7.03 (dd, J = 7.6, 0.6 Hz, 1H), 6.93 (ddd, J = 8.2, 7.5, 1.0 Hz, 1H), 6.68 – 6.55 (m, 2H), 6.15 (d, J = 1.8 Hz, 1H), 3.33 (dq, J = 13.6, 6.6 Hz, 1H), 1.82 (s, 3H), 1.78 (s, 3H), 1.21 (d, J = 6.5 Hz, 3H). 13C NMR (100 MHz, CDCl₃) δ 179.34, 156.42, 155.87, 149.76, 135.73, 133.89, 132.30, 130.81, 128.77, 128.65, 125.97, 122.31, 122.02, 116.78, 94.86, 71.80, 50.73, 23.91, 23.25, 17.42, 17.28. HRMS (ESI) m/z calcd for C₂₂H₂₄N₅O₂⁺ (M+H)⁺ 390.1925, found 390.1923.

(Z)-3-((sec-butylamino)methylene)-2-(1-cyclohexyl-1H-tetrazol-5-yl)chroman-4-one

9l yellow solid, 82% (EA/Hex = 20%, Rf = 0.2), 1H NMR (400 MHz, CDCl₃) δ 10.28 (d, J = 17.8 Hz, 1H), 7.92 (d, J = 6.4 Hz, 1H), 7.40 – 7.33 (m, 1H), 7.12 – 7.05 (m, 1H), 6.84 (dd, J = 8.2, 3.6 Hz, 1H), 6.47 (d, J = 12.0 Hz, 2H), 4.64 (dd, J = 15.4, 7.7, 3.9 Hz, 1H), 3.08 (td, J = 14.6, 7.7 Hz, 1H), 2.06 (d, J = 9.4 Hz, 3H), 1.91 (d, J = 8.5 Hz, 4H), 1.53 – 1.46 (m, 2H), 1.32 (dd, J = 15.6, 5.6 Hz, 3H), 1.19 (dd, J = 8.4, 6.8 Hz, 3H), 0.91 – 0.84 (m, 3H). 13C NMR (101 MHz, CDCl₃) δ 180.08, 149.82, 133.98, 126.50, 125.76, 125.43, 123.69, 122.75, 118.25, 116.83, 95.94, 71.75, 59.07, 57.18, 33.27, 32.70, 30.54, 25.22, 21.40, 10.28. HRMS (ESI) m/z calcd for C₂₁H₂₈N₅O₂⁺ (M+H)⁺ 382.2238, found 382.2236.

(Z)-3-((cyclopropylamino)methylene)-2-(1-(2,6-dimethylphenyl)-1H-tetrazol-5-yl)chroman-4-one

9m yellow solid, 51% (EA/Hex = 20%, Rf = 0.2), 1H NMR (400 MHz, CDCl₃) δ 10.04 (d, J = 12.2 Hz, 1H), 7.72 (dd, J = 7.8, 1.7 Hz, 1H), 7.28 (dd, J = 8.6, 6.7 Hz, 1H), 7.10 (dd, J = 17.7, 7.6 Hz, 2H), 7.00 – 6.88 (m, 1H), 6.69 (d, J = 12.6 Hz, 1H), 6.60 (d, J = 8.3 Hz, 1H), 6.12 (s, 1H), 2.69 (dt, J = 6.8, 3.2 Hz, 1H), 1.85 (s, 3H), 1.80 (s, 3H), 0.78 – 0.68 (m, 2H), 0.64 – 0.52 (m, 2H). 13C
NMR (100 MHz, CDCl₃) δ 179.77, 156.50, 155.71, 151.69, 135.74, 134.13, 132.29, 130.85, 128.80, 128.69, 126.17, 122.30, 122.11, 116.90, 96.06, 71.74, 29.37, 17.44.

HRMS (ESI) m/z calcd for C₂₂H₂₂N₅O₂⁺ (M+H)⁺ 388.1768, found 388.1762.

(Z)-2-(1-(tert-butyl)-1H-tetrazol-5-yl)-3-((cyclobutylamino)methylene)chroman-4-one

9n yellow solid, 60% (EA/Hex = 20%, Rₛ = 0.2), ¹H NMR (400 MHz, CDCl₃) δ 10.43 – 10.26 (m, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.28 (dd, J = 10.6, 4.9 Hz, 1H), 7.02 (td, J = 7.7, 0.9 Hz, 1H), 6.80 – 6.72 (m, 1H), 6.63 (d, J = 12.8 Hz, 1H), 6.36 (s, 1H), 3.75 (dd, J = 16.3, 8.2 Hz, 1H), 2.28 (dt, J = 14.1, 4.9 Hz, 2H), 2.04 (dd, J = 19.7, 10.0 Hz, 2H), 1.85 – 1.76 (m, 9H), 1.79 – 1.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 180.66, 155.49, 153.29, 148.77, 133.73, 126.61, 123.98, 122.56, 116.80, 96.75, 71.36, 62.58, 53.75, 31.70, 31.48, 29.99, 14.41. HRMS (ESI) m/z calcd for C₁₉H₂₄N₅O₂⁺ (M+H)⁺ 354.1925, found 354.1926.

3-((1-(tert-butyl)-1H-tetrazol-5-yl)(butylamino)methyl)-4H-chromen-4-one

10o white solid, 77% (EA/Hex = 20%, Rₛ = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.17 (m, 2H), 7.66 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.47 – 7.37 (m, 2H), 5.82 (s, 1H), 2.62 (dt, J = 10.9, 7.1 Hz, 1H), 2.51 (dt, J = 10.9, 7.2 Hz, 1H), 1.75 (s, 9H), 1.44 (dt, J = 14.7, 7.3 Hz, 2H), 1.35 – 1.19 (m, 3H), 0.84 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.08, 156.26, 155.98, 155.23, 134.07, 125.97, 125.46, 123.61, 122.62, 118.26, 61.65, 48.02, 47.75, 31.98, 29.89, 20.25, 13.84. HRMS (ESI) m/z calcd for C₁₉H₂₆N₅O₂⁺ (M+H)⁺ 356.2081, found 356.2063.

3-((1-(tert-butyl)-1H-tetrazol-5-yl)(phenylamino)methyl)-4H-chromen-4-one
10p white solid, 84% (EA/Hex = 20%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 0.9 Hz, 1H), 8.15 (dd, J = 8.0, 1.7 Hz, 1H), 7.67 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.17 (t, J = 7.9 Hz, 2H), 6.77 (t, J = 7.4 Hz, 1H), 6.69 – 6.63 (m, 2H), 6.48 (d, J = 8.5 Hz, 1H), 4.45 (t, J = 8.4 Hz, 1H), 1.83 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 176.83, 156.49, 155.53, 154.18, 144.70, 134.09, 129.67, 125.59, 123.48, 121.64, 119.38, 118.33, 113.44, 62.24, 45.15, 29.98. HRMS (ESI) m/z calcd for C₂₁H₂₂N₅O₂+(M+H)⁺ 376.1768, found 376.1725.

2-(1-(tert-butyl)-1H-tetrazol-5-yl)-4-oxo-4H-chromene-3-carbaldehyde

19a white solid, 63% (EA/Hex = 25%, R_f = 0.3), ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.33 (d, J = 7.9 Hz, 1H), 7.86 – 7.79 (m, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 1.70 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 187.95, 175.76, 156.48, 155.69, 146.93, 135.80, 127.50, 126.36, 124.63, 121.16, 118.41, 63.10, 29.69. HRMS (ESI) m/z calcd for C₁₅H₁₅N₄O₃+(M+H)⁺ 299.1139, found 299.1134.

2-(1-cyclohexyl-1H-tetrazol-5-yl)-4-oxo-4H-chromene-3-carbaldehyde

19b white solid, 54% (EA/Hex = 25%, R_f = 0.3), ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.48 (dd, J = 7.9, 7.2 Hz, 1H), 4.98 – 4.85 (m, 1H), 2.18 (d, J = 12.6 Hz, 2H), 2.06 – 1.92 (m, 5H), 1.76 (d, J = 13.3 Hz, 1H), 1.48 – 1.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 179.46, 173.80, 162.43, 155.61, 149.43, 134.82, 126.71, 126.55, 124.94, 122.62, 118.37, 60.16, 32.91, 25.20, 24.87. HRMS (ESI) m/z calcd for C₁₇H₁₇N₄O₃+(M+H)⁺ 325.1295, found 325.1291.

4-oxo-2-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)-4H-chromene-3-carbaldehyde
19c white solid, 71% (EA/Hex = 25%, Rf = 0.3), 1H NMR (400 MHz, CDCl$_3$) δ 10.36 (s, 1H), 8.34 (dd, J = 8.0, 1.6 Hz, 1H), 7.83 (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.59 (td, J = 7.7, 1.0 Hz, 1H), 7.50 – 7.46 (m, 1H), 2.11 (s, 2H), 1.70 (s, 6H), 0.86 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 187.96, 175.76, 156.73, 155.59, 146.04, 135.85, 127.52, 124.62, 121.18, 118.24, 66.59, 54.62, 31.66, 30.72, 29.35. HRMS (ESI) m/z calcd for C$_{19}$H$_{23}$N$_4$O$_3$+ (M+H)$^+$ 355.1765, found 355.1782.

4-(1-(tert-butyl)-1H-tetrazol-5-yl)-4H-chromeno[4,3-c]isoxazole

20 white solid, 78% (EA/Hex = 30%, Rf = 0.2), 1H NMR (400 MHz, CDCl$_3$) δ 8.64 – 8.59 (m, 1H), 7.96 (dd, J = 7.6, 1.4 Hz, 1H), 7.39 (ddd, J = 8.6, 4.7, 1.3 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.07 – 7.00 (m, 1H), 6.64 (d, J = 1.3 Hz, 1H), 1.88 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 154.57, 153.31, 152.75, 150.61, 132.37, 125.07, 123.88, 117.61, 114.42, 110.54, 65.56, 63.32, 29.86. HRMS (ESI) m/z calcd for C$_{15}$H$_{16}$N$_5$O$_2$+ (M+H)$^+$ 298.1299, found 298.1297.

6-(1-cyclohexyl-1H-tetrazol-5-yl)-2-methyl-6H-chromeno[3,4-e]pyrazolo[1,5-a]pyrimidine

21 white solid, 83% (EA/Hex = 30%, Rf = 0.2), 1H NMR (400 MHz, CDCl$_3$) δ 9.51 (d, J = 8.0 Hz, 1H), 8.03 (s, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.82 (s, 1H), 6.60 (s, 1H), 4.72 – 4.56 (m, 1H), 2.60 (s, 3H), 2.13 – 1.95 (m, 5H), 1.76 (s, 2H), 1.35 (t, J = 8.6 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 156.16, 153.82, 151.15, 151.08, 144.32, 135.55, 133.71, 130.70, 123.56, 117.06, 115.73, 107.82, 97.02, 67.39, 59.25, 33.25, 25.25, 24.71, 14.90. HRMS (ESI) m/z calcd for C$_{21}$H$_{22}$N$_7$O$^+$ (M+H)$^+$ 388.1880, found 388.1883.
5-(1-cyclohexyl-1H-tetrazol-5-yl)-5H-chromeno[4,3-d]pyrimidin-2-amine

22 white solid, 84% (EA/Hex = 35%, Rf = 0.2), 1H NMR (400 MHz, CDCl$_3$) δ 8.17 (dd, $J = 7.8$, 1.5 Hz, 1H), 7.83 (s, 1H), 7.38 (td, $J = 8.2$, 1.7 Hz, 1H), 7.13 (dd, $J = 11.0$, 4.1 Hz, 1H), 6.89 (d, $J = 8.2$ Hz, 1H), 6.69 (s, 1H), 5.32 (s, 2H), 4.61 – 4.45 (m, 1H), 2.02 (dd, $J = 18.4$, 8.7 Hz, 3H), 1.97 – 1.86 (m, 3H), 1.71 (s, 1H), 1.30 (s, 3H). ^{13}C NMR (100 MHz, CDCl$_3$) δ 163.63, 155.97, 154.80, 154.47, 151.43, 133.61, 125.43, 123.44, 120.64, 117.05, 111.32, 68.33, 59.23, 33.23, 32.75, 25.23, 24.72. HRMS (ESI) m/z calcd for C$_{18}$H$_{20}$N$_7$O$^+$ (M+H)$^+$ 350.1724, found 350.1717.
NMR Characterization Data and Figures of Products

1H NMR and 13C NMR spectrum of 5a
1H NMR and 13C NMR spectrum of 6a
1H NMR and 13C NMR spectrum of 6b
1H NMR and 13C NMR spectrum of 6c.
1H NMR and 13C NMR spectrum of 6d
1H NMR and 13C NMR spectrum of 6e
1H NMR and 13C NMR spectrum of 6f
1H NMR and 13C NMR spectrum of 6g
1H NMR and 13C NMR spectrum of 6h
1H NMR and 13C NMR spectrum of 6i
1H NMR and 13C NMR spectrum of 6j
1H NMR and 13C NMR spectrum of 6k
1H NMR and 13C NMR spectrum of 61
1H NMR and 13C NMR spectrum of 5m
1H NMR and 13C NMR spectrum of 5n
1H NMR and 13C NMR spectrum of 7
1H NMR and 13C NMR spectrum of 9a
1H NMR and 13C NMR spectrum of $9b$
1H NMR and 13C NMR spectrum of 9c
1H NMR and 13C NMR spectrum of 9d
1H NMR and 13C NMR spectrum of 9e
1H NMR and 13C NMR spectrum of 9f
1H NMR and 13C NMR spectrum of 9g
1H NMR and 13C NMR spectrum of 9h
1H NMR and 13C NMR spectrum of 9i
1H NMR and 13C NMR spectrum of 9j
1H NMR and 13C NMR spectrum of 9k.
1H NMR and 13C NMR spectrum of 9m
1H NMR and 13C NMR spectrum of 9n
1H NMR and 13C NMR spectrum of 100
1H NMR and 13C NMR spectrum of 10p
1H NMR and 13C NMR spectrum of 19a
1H NMR and 13C NMR spectrum of 19b
$^{1} \text{H NMR and } ^{13} \text{C NMR spectrum of 19c}$
1H NMR and 13C NMR spectrum of 20
$^{1}\text{H NMR}$ and $^{13}\text{C NMR}$ spectrum of 21
1H NMR and 13C NMR spectrum of 22
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: a

<table>
<thead>
<tr>
<th>Property</th>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond precision: C-C</td>
<td>0.0058 A</td>
<td>0.0058 A</td>
</tr>
<tr>
<td>Wavelength</td>
<td></td>
<td>0.71073</td>
</tr>
<tr>
<td>Cell:</td>
<td>a=11.010(3) b=17.603(5) c=15.172(4)</td>
<td>a=11.010(3) b=17.603(5) c=15.172(4)</td>
</tr>
<tr>
<td>alpha</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>beta</td>
<td>109.260(5)</td>
<td>109.260(5)</td>
</tr>
<tr>
<td>gamma</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Temperature</td>
<td>296 K</td>
<td>296 K</td>
</tr>
<tr>
<td>Volume</td>
<td>2775.9(13)</td>
<td>2776.0(12)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
<td>P2(1)/n</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2yn</td>
<td>?</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C32 H28 N3 O6</td>
<td>C32 H28 N3 O6</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C32 H28 N3 O6</td>
<td>C32 H28 N3 O6</td>
</tr>
<tr>
<td>Mr</td>
<td>550.57</td>
<td>550.57</td>
</tr>
<tr>
<td>Dx, g cm⁻³</td>
<td>1.317</td>
<td>1.317</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>0.092</td>
<td>0.092</td>
</tr>
<tr>
<td>F000</td>
<td>1156.0</td>
<td>1156.0</td>
</tr>
<tr>
<td>F000'</td>
<td>1156.56</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>13,20,18</td>
<td>13,20,18</td>
</tr>
<tr>
<td>Nref</td>
<td>4888</td>
<td>4883</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.976,0.982</td>
<td>0.976,0.982</td>
</tr>
<tr>
<td>Tmin’</td>
<td>0.976</td>
<td></td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.976 Tmax=0.982
AbsCorr = MULTI-SCAN

Data completeness= 0.999 Theta(max)= 25.000

R(reflections)= 0.0692(2587) wR2(reflections)= 0.1719(4883)

S = 1.018 Npar= 371

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.
Alert level B

<table>
<thead>
<tr>
<th>Alert Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAT097_ALERT_2_B</td>
<td>Large Reported Max. (Positive) Residual Density 1.08 eA-3</td>
</tr>
<tr>
<td>PLAT230_ALERT_2_B</td>
<td>Hirshfeld Test Diff for C28 -- C30 11.8 s.u.</td>
</tr>
</tbody>
</table>

Alert level C

<table>
<thead>
<tr>
<th>Alert Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIPMX02_ALERT_1_C</td>
<td>The maximum difference density is > 0.1ZMAX0.75</td>
</tr>
<tr>
<td>PLAT094_ALERT_2_C</td>
<td>Ratio of Maximum / Minimum Residual Density 3.59 Report</td>
</tr>
<tr>
<td>PLAT220_ALERT_2_C</td>
<td>Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 3.4 Ratio</td>
</tr>
<tr>
<td>PLAT241_ALERT_2_C</td>
<td>High ‘MainMol’ Ueq as Compared to Neighbors of C7 Check</td>
</tr>
<tr>
<td>PLAT242_ALERT_2_C</td>
<td>Low ‘MainMol’ Ueq as Compared to Neighbors of C1 Check</td>
</tr>
<tr>
<td>PLAT242_ALERT_2_C</td>
<td>Low ‘MainMol’ Ueq as Compared to Neighbors of C28 Check</td>
</tr>
<tr>
<td>PLAT334_ALERT_2_C</td>
<td>Small Aver. Benzene C-C Dist C1 -- C6 1.36 Ang.</td>
</tr>
<tr>
<td>PLAT340_ALERT_3_C</td>
<td>Low Bond Precision on C-C Bonds 0.00581 Ang.</td>
</tr>
<tr>
<td>PLAT366_ALERT_2_C</td>
<td>Short? C(sp?)--C(sp?) Bond C31 -- C32 1.09 Ang.</td>
</tr>
</tbody>
</table>

Alert level G

<table>
<thead>
<tr>
<th>Alert Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAT003_ALERT_2_C</td>
<td>Number of Uiso or Uij Restrained non-H Atoms 2 Report</td>
</tr>
<tr>
<td>PLAT005_ALERT_5_G</td>
<td>No Embedded Refinement Details Found in the CIF Please Do !</td>
</tr>
<tr>
<td>PLAT066_ALERT_1_G</td>
<td>Predicted and Reported Tmin&Tmax Range Identical ? Check</td>
</tr>
<tr>
<td>PLAT230_ALERT_2_G</td>
<td>Hirshfeld Test Diff for C28 -- C31 7.4 s.u.</td>
</tr>
<tr>
<td>PLAT343_ALERT_2_G</td>
<td>Unusual sp? Angle Range in Main Residue for C32 Check</td>
</tr>
<tr>
<td>PLAT793_ALERT_4_G</td>
<td>Model has Chirality at C18 (Centro SPGR) R Verify</td>
</tr>
<tr>
<td>PLAT860_ALERT_3_G</td>
<td>Number of Least-Squares Restraints 1 Note</td>
</tr>
<tr>
<td>PLAT899_ALERT_4_G</td>
<td>SHELXL97 is Deprecated and Succeeded by SHELXL 2018 Note</td>
</tr>
</tbody>
</table>

0 ALERT level A = Most likely a serious problem - resolve or explain
2 ALERT level B = A potentially serious problem, consider carefully
9 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected

2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
12 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C or E* or *IUCrData*, you should make sure that [full publication checks](#) are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 23/04/2018; check.def file version of 23/04/2018
checkCIF/PLATON report

Structure factors have been supplied for datablock(s) a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: a

Bond precision: C-C = 0.0061 Å Wavelength=0.71073 Å

Cell:
 a=10.815(8) b=25.531(17) c=15.619(11)
 alpha=90 beta=90.186(14) gamma=90

Temperature: 293 K

Calculated Reported
Volume 4313(5) 4313(5)
Space group P 21/c P 1 21/c 1
Hall group -P 2ybc -P 2ybc
Moiety formula C23 H25 N5 O2 C23 H25 N5 O2
Sum formula C23 H25 N5 O2 C23 H25 N5 O2
Mr 403.48 403.48
Dx,g cm-3 1.243 1.243
Z 8 8
Mu (mm-1) 0.082 0.082
F000 1712.0 1712.0
F000’ 1712.64
h,k,lmax 12,30,18 12,30,18
Nref 7600 7588
Tmin,Tmax 0.977,0.984 0.977,0.984
Tmin’ 0.977

Correction method= # Reported T Limits: Tmin=0.977 Tmax=0.984
AbsCorr = NONE

Data completeness= 0.998 Theta(max)= 25.000
R(reflections)= 0.0767(3484) wr2(reflections)= 0.1816(7588)
S = 1.039 Npar= 541

The following ALERTS were generated. Each ALERT has the format
 test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
Alert level B

PLAT242_ALERT_2_B Low ‘MainMol’ Ueq as Compared to Neighbors of C19 Check

Alert level C

ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied.

From the CIF: _exptl_absorpt_correction_T_min 0.977
From the CIF: _exptl_absorpt_correction_T_max 0.984

RINTA01_ALERT_3_C The value of Rint is greater than 0.12
Rint given 0.150

PLAT020_ALERT_3_C The Value of Rint is Greater Than 0.12 0.150 Report

PLAT220_ALERT_2_C Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range 4.8 Ratio

PLAT221_ALERT_2_C Non-Solvent Resd 2 C Ueq(max)/Ueq(min) Range 3.9 Ratio

PLAT232_ALERT_2_C Non-Solv. Resd 1 H Uiso(max)/Uiso(min) Range 5.4 Ratio

PLAT233_ALERT_2_C Non-Solv. Resd 2 H Uiso(max)/Uiso(min) Range 4.6 Ratio

PLAT234_ALERT_4_C Large Hirshfeld Difference C19 --C22 . 0.16 Ang.

PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C42 Check

PLAT244_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C42 Check

PLAT250_ALERT_2_C Large Average Ueq of Residue Including 01 0.083 Check

PLAT250_ALERT_2_C Large Average Ueq of Residue Including 03 0.081 Check

PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C2 -C8 1.37 Ang.

PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C13 -C18 1.37 Ang.

PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C24 -C30 1.37 Ang.

PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C35 -C40 1.37 Ang.

PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00607 Ang.

Alert level G

PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 1 Report

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 2 Report

PLAT066_ALERT_1_G Predicted and Reported Tmin/Tmax Range Identical? Check

PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 1 Report

PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check

PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature (K) 293 Check

PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C1 Check

PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C5 Check

PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C23 Check

PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety C27 Check

PLAT793_ALERT_4_G Model has Chirality at C10 (Centro SPGR) R Verify

PLAT793_ALERT_4_G Model has Chirality at C32 (Centro SPGR) R Verify

PLAT860_ALERT_3_G Number of Least-Squares Restraints 6 Note

PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 1 Note

PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File ... 6 Note

PLAT961_ALERT_5_G Dataset Contains no Negative Intensities Please Check

0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
24 ALERT level C = Check. Ensure it is not caused by an omission or oversight
16 ALERT level G = General information/check it is not something unexpected

5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/01/2019; check.def file version of 19/12/2018