Silver-Catalyzed Cascade Reactions of 3-Cyanochromone with 1,1-Enediamines: Synthesis of Highly Functionalized 2-(Pyridin-3-yl)-chromeno[2,3-d]pyrimidines

Qiang Xiao, Jin Liu, Jia-Hui Nie, Ling-Bin Kong, Jun Lin* and Sheng-Jiao Yan*

Supporting Information

Table of Contents

General procedure for the synthesis of 2-(pyridin-3-yl)-chromeno- [2,3-d]pyr	rimidines
3	S3
Spectroscopic data of 2-(pyridin-3-yl)-chromeno[2,3-d]pyrimidines 3	S4
X-ray Structure and Data of 3v	S14
Figure S1. X-Ray crystal structure of 3v.	S14
Table S1. Crystal data and structure refinement for 3v	S14
Table S2. Bond lengths [A] and angles [deg] for 3v	S15
Table S3. Torsion angles [°] for 3v	S17
Figure S2. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3a	S18
Figure S3. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3a	S19
Figure S4. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3b	S20
Figure S5. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3b	S21
Figure S6. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3c	S22
Figure S7. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3c	S23
Figure S8. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S24
Figure S9. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S25
Figure S10. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3e	S26
Figure S11. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3e	S27
Figure S12. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S28
Figure S13. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S29
Figure S14. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3g	S30
Figure S15. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3g	S31
Figure S16. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3h	S32
Figure S17. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3h	S33
Figure S18. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3i	S34
Figure S19. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3i	S35
Figure S20. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3j	S36

Figure S21. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3j	S37
Figure S22. ¹ H NMR (600 MHz, CDCl ₃) spectra of compound 3k	S38
Figure S23. ¹³ C NMR (150 MHz, CDCl ₃) spectra of compound 3k	S39
Figure S24. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 31	S40
Figure S25. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 31	S41
Figure S26. ¹ H NMR 500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3m	S42
Figure S27. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3m	S43
Figure S28. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 3n	S44
Figure S29. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3n	S45
Figure S30. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectra of compound 30	S46
Figure S31. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 30	S47
Figure S32. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3p	S48
Figure S33. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3p	S49
Figure S34. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3q	S50
Figure S35. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectra of compound 3q	S51
Figure S36. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3r	S52
Figure S37. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3r	S53
Figure S38. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3s	S54
Figure S39. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3s	S55
Figure S40. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3t	S56
Figure S41. ¹³ C NMR (125 MHz, DMSO- d_6)) spectra of compound 3t	S57
Figure S42. ¹ H NMR (500 MHz, DMSO- d_6) spectra of compound 3u	S58
Figure S43. ¹³ C NMR (125 MHz, DMSO- d_6) spectra of compound 3u	S59
Figure S44. ¹ H NMR (600MHz, DMSO- d_6) spectra of compound $3v$	S60
Figure S45. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound $3v$	S61
Figure S46. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3w	S62
Figure S47. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound $3w$	S63
Figure S48. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound $3x$	S64
Figure S49. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3x	S65
Figure S50. ¹ H NMR (600 MHz, DMSO- d_6) spectra of intermediate 6	S66
Figure S51. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of intermediate 6	S67
Figure S52. HPLC of the reaction mixture	S68
Figure S53. HRMS of compound 1b	S69
Figure S54. HRMS of compound 2c	S70
Figure S55. HRMS of intermediate 4/5/6	S71
Figure S56. HRMS of intermediate 7	S72
Figure S57. HRMS of intermediate 8	S73
Figure S58. HRMS of intermediate 9 and target compound 3k	S74
Figure S59. HRMS of plasticizer	
References	S76

General information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker Ascend III 600 (¹H: 600 MHz, ¹³C: 150 MHz) or Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz). Chemical shifts (δ) are expressed in ppm and *J* values are given in Hz. Deuterated DMSO-*d*₆ or CDCl₃ was used as solvents. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF254. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on silica gel (200–300 mesh). X-ray diffraction was obtained by Bruker Apex II CCD. 1,1-enediamines (EDAMs) **2** were synthesized by known literature procedures.¹ All the other chemicals used in the experiment were purchased from commercial sources and were used without further purification.

<u>General procedure for the synthesis of 2-(pyridin-3-yl)-chromeno-</u> [2,3-d]pyrimidines 3

3-Cyanochromone 1 (2.0 mmol), EDAM derivative 2 (1.0 mmol), and dioxane (6 mL) were placed into a 25-mL round-bottom flask, and the mixture was stirred at room temperature for 5 min. Then, Ag_2CO_3 (0.5 mmol) was added while stirring under reflux conditions. The mixture was stirred until the completion of the reaction, which was monitored by TLC (approximately 48 h). The reaction mixture was extracted with dichloromethane (3×10 mL), washed with water and brine, and then dried over Na₂SO₄. The combined organic phases were evaporated under reduced pressure to afford the crude product. Finally, the product was obtained in pure form through column chromatography over silica gel using a mixture of petroleum ether/ethyl acetate (3:1, v/v) as the eluent.

Spectroscopic data of 2-(pyridin-3-yl)-chromeno[2,3-d]pyrimidines 3

2-(6-((4-Chlorophenethyl)amino)-2-(2-hydroxyphenyl)-5-nitropyridin-3-yl)-5*H*-chromeno[2, 3-*d*]pyrimidin-5-one (3a)

Yellow solid; Mp: 288.4–289.5°C; IR(KBr): 3551, 3475, 3415, 1675, 1616, 1577, 1396, 1276 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.30 (m, 2H, ArH), 9.00 (br, 1H, OH), 8.91–8.89 (m, 1H, ArH), 8.18–8.17 (m, 1H, ArH), 7.94–7.92 (m, 1H, ArH), 7.73–7.72 (m, 1H, ArH), 7.62–7.54 (m, 2H, ArH), 7.36–7.26 (m, 4H, PhH), 7.25–7.24 (m, 1H, ArH), 7.00–6.98 (m, 1H, ArH), 6.63–6.61 (br, 1H, NH), 3.90–3.87 (m, 2H, NCH₂), 3.02–3.00 (t, *J* = 1.8 Hz, 2H, ArCH₂); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 176.0, 168.6, 165.5, 162.5, 158.7, 155.4, 155.0, 151.6, 138.8, 138.2, 137.0, 131.5, 131.4, 131.4, 131.1, 128.8, 127.5, 126.4, 126.2, 126.0, 122.7, 122.4, 119.8, 119.1, 115.9, 111.9, 43.0, 34.7; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₂₁ClN₅O₅ [M+H]⁺, 566.1226; found, 566.1222.

2-(2-(2-Hydroxyphenyl)-5-nitro-6-(phenethylamino)pyridin-3-yl)-5*H*-chromeno[2,3-*d*]pyrimi din-5-one (3b)

Yellow solid; Mp: 210.3–212.1°C; IR(KBr): 3415, 3378, 1678, 1612, 1577, 1467, 1396, 1301 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.31 (m, 2H, ArH), 9.00 (br, 1H, OH), 8.94–9.92 (m, 1H, ArH), 8.18–8.17 (m, 1H, ArH), 7.95–7.92 (m, 1H, ArH), 7.74–7.72 (m, 1H, ArH), 7.65–7.64 (m, 1H, ArH), 7.57–7.55 (m, 1H, ArH), 7.33–7.21 (m, 6H, ArH), 7.00–6.98 (m, 1H, ArH), 6.63–6.61 (br, 1H, NH), 3.91–3.87 (m, 2H, NCH₂), 3.03–3.00 (m, 2H, ArCH₂); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 176.0; 168.6, 165.5, 162.5, 158.7, 155.4, 155.0, 151.6, 139.7, 138.2, 137.0, 131.5, 131.4, 129.2, 128.9, 127.5, 126.7, 126.4, 126.2, 126.0, 122.7, 122.4, 119.8, 119.1, 115.9, 111.9, 43.3, 35.5; HRMS (TOF ES⁺): *m/z* calcd for C₃₀H₂₂N₅O₅ [M+H]⁺, 532.1615; found, 532.1609.

2-(6-((4-Fluorobenzyl)amino)-2-(2-hydroxyphenyl)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3-*d*] pyrimidin-5-one (3c)

Yellow solid; Mp: 120.6–121.8°C; IR(KBr): 3552, 3477, 3415, 1617, 1578, 1397, 1341, 1225 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.39 (br, 1H, OH), 9.29–9.26 (m, 2H, ArH), 9.00 (s, 1H, ArH), 8.18–8.17 (m, 1H, ArH), 7.93–7.92 (m, 1H, ArH), 7.73–7.71 (m, 1H, ArH), 7.57–7.55 (m, 1H, ArH), 7.47–7.42 (m, 2H, ArH), 7.36–7.35 (m, 1H, ArH), 7.23–7.15 (m, 3H, ArH), 6.92–-6.91 (m, 1H, ArH), 6.58–6.56 (br, 1H, NH), 4.87-4.86 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 176.0, 168.6, 165.5, 162.6, 162.1, 161.4 (d, *J* = 237.5), 158.7, 155.4, 154.9, 151.4, 138.2, 129.9, 137.0, 136.0, 131.5, 131.4, 129.9, 127.3, 126.4, 126.2, 122.7, 122.6, 119.7, 119.1, 115.9, 115.4 (d, *J* = 21.3Hz), 112.0, 44.3; HRMS (TOF ES⁺):*m*/*z* calcd for C₂₉H₁₉FN₅O₅ [M+H]⁺, 536.1365; found,536.1360.

2-(6-((2,4-Difluorobenzyl)amino)-2-(2-hydroxyphenyl)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3 -*d*]pyrimidin-5-one (3d)

Yellow solid; Mp: 215.6–216.3°C; IR (KBr): 3421.5, 3312.6, 3158.3, 1603.2, 1521.6, 1418.3, 1281.5, 1211.2cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.32 (br, 1H, OH), 9.30–9.28 (m, 2H, ArH), 9.00 (s, 1H, ArH), 8.18–8.16 (m, 1H, ArH), 7.94–7.91 (m, 1H, ArH), 7.72–7.70 (m, 1H, ArH), 7.57–7.54 (m, 1H, ArH), 7.49–7.47 (m, 1H, ArH), 7.30–7.20 (m, 3H, ArH), 7.06–7.04 (m, 1H, ArH), 6.91–6.88 (m, 1H, ArH), 6.58–6.55 (br, 1H, NH), 4.91-4.90 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 176.0, 168.7, 165.5, 161.9, 161.8 (d, ¹*J*_{CF} = 249.4 Hz), 160.5 (d, ¹*J*_{CF} = 246.3 Hz), 158.7, 155.4, 154.9, 151.3, 138.1, 137.0, 131.5, 131.0, 130.9, 127.2, 126.5, 126.3, 122.8, 119.7, 119.1, 115.8, 111.1, 104.1 (t, ²*J*_{CF} = 25.0 Hz, ²*J*_{CF} = 26.3 Hz), 38.5; HRMS(TOF ES⁺): *m*/*z* calcd for C₂₉H₁₈F₂N₅O₅ [M+H]⁺, 554.1271; found, 554.1265.

2-(6-((4-Chlorobenzyl)amino)-2-(2-hydroxyphenyl)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3-*d*] pyrimidin-5-one (3e)

Yellow solid; Mp: 214.1–215.2°C; IR(KBr): 3385, 1616, 1581, 1396, 1343, 1256, 1218, 1093; ¹H NMR (600 MHz, DMSO-*d*₆): *δ* = 9.43–9.41 (br, 1H, OH), 9.29–9.26 (m, 2H, ArH), 9.00 (s, 1H,

ArH), 8.18–8.16 (m, 1H, ArH), 7.94–7.92 (m, 1H, ArH), 7.72–7.71 (m, 1H, ArH), 7.57–7.54 (m, 2H, ArH), 7.44–7.39 (m, 4H, PhH), 7.31–7.30 (m, 1H, ArH), 7.23–6.20 (m, 1H, ArH), 6.91–6.88 (m, 1H, ArH), 6.57–6.56 (br, 1H, NH), 4.87–4.86 (m, 2H, ArCH₂); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 176.0$; 168.6, 165.5, 162.0, 158.7, 155.4, 154.9, 151.4, 139.0, 138.2, 137.0, 131.8, 131.5, 129.7, 129.5, 128.8, 128.7, 127.2, 126.4, 126.3, 126.2, 122.7, 119.7, 119.1, 115.9, 112.0, 44.3; HRMS(TOF ES⁺):m/z calcd for C₂₉H₁₉CIN₅O₅ [M+H]⁺, 552.1069; found, 552.1064.

2-(6-(Benzylamino)-2-(2-hydroxyphenyl)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3-*d*]pyrimidin -5-one (3f)

Yellow solid; Mp: 186.6–188.1°C; IR(KBr): 3448, 1616, 1584, 1434, 1399, 1341, 1247; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.38 (br, 1H, OH), 9.29–9.25 (m, 2H, ArH), 9.00 (s, 1H, ArH), 8.18–8.17 (m, 1H, ArH), 7.94–7.92 (m, 1H, ArH), 7.73–7.71 (m, 1H, ArH), 7.57–7.55 (m, 2H, ArH), 7.42–7.33 (m, 4H, ArH), 7.28–7.21 (m, 2H, ArH), 6.90–6.88 (m, 1H, ArH), 6.57–6.56 (br, 1H, NH), 4.90–4.89 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 176.0; 168.7, 165.5, 162.1, 158.7, 155.4, 155.0, 151.5, 139.8, 138.2, 137.0, 131.6, 131.4, 128.8, 127.9, 127.3, 126.4, 126.2, 126.2, 122.7, 122.6, 119.7, 119.1, 115.8, 112.0, 45.0; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₂₀N₅O₅ [M+H]⁺, 518.1459; found, 518.1456.

2-(2-(2-Hydroxyphenyl)-5-nitro-6-(phenylamino)pyridin-3-yl)-5*H*-chromeno[2,3-*d*]pyrimidin -5-one (3g)

Yellow solid; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 10.31$ (br, 1H, OH), 9.33 (m, 2H, ArH), 9.09 (m, 1H, ArH), 8.19–8.18 (m, 1H, ArH), 7.95–7.94 (m, 1H, ArH), 7.92–7.72 (m, 2H, ArH), 7.57–7.55 (m, 2H, ArH), 7.42–7.39 (m, 2H, ArH), 7.25–7.17 (m, 2H, ArH), 6.96–6.93 (m, 1H, ArH), 6.62–6.61 (br, 1H, NH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 176.0$; 168.3, 165.5, 162.8, 158.8, 155.4, 155.1, 149.1, 138.4, 138.2, 137.0, 131.5,131.4, 129.1, 127.1, 126.9, 126.5, 126.2, 125.1, 124.5, 123.4, 122.8, 119.9, 119.1, 116.1, 112.1; HRMS(TOF ES⁺): m/z calcd for C₂₈H₁₈N₅O₅ [M+H]⁺, 504.1302; found, 504.1305.

2-(2-(2-Hydroxyphenyl)-6-(methylamino)-5-nitropyridin-3-yl)-5H-chromeno[2,3-d]pyrimidi n-5-one (3h)

Yellow solid; Mp: 287–288°C; IR(KBr): 3396.6, 1620.4, 1588.4, 1392.7, 1107.0, 761.8; ¹H NMR (600 MHz, CDCl₃): δ = 11.64 (br, 1H, OH), 9.51 (m, 1H, ArH), 9.18 (m, 1H, ArH), 8.61–8.60 (br, 1H, NH), 8.36–8.34 (m, 1H, ArH), 7.87–7.84 (m, 1H, ArH), 7.65–7.64 (m, 1H, ArH), 7.54–7.52 (m, 1H, ArH), 7.33–7.31 (m, 1H, ArH), 7.11–7.10 (m, 1H, ArH), 6.81–6.79 (m, 1H, ArH), 6.59–6.57 (m, 1H, ArH), 3.33–3.32 (m, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 175.8, 169.2, 165.9, 163.3, 159.6, 158.4, 155.4, 151.4, 140.7, 136.3, 133.0, 131.7, 126.8, 126.3, 125.8, 122.9, 121.3, 120.0, 118.7, 118.5, 112.0, 28.8; HRMS(TOF ES⁺): *m*/*z* calcd for C₂₃H₁₆N₅O₅ [M+H]⁺, 442.1146; found, 442.1148.

2-(6-((4-Chlorobenzyl)amino)-2-(2-hydroxy-5-methylphenyl)-5-nitropyridin-3-yl)-7-methyl-5 *H*-chromeno[2,3-*d*]pyrimidin-5-one (3i)

Yellow solid; Mp: 243.1–244.0°C; IR(KBr): 3443.1, 3341.7, 3195.6, 1660.5, 1616.6, 1457.5, 1403.8, 1170.3 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 9.30$ (br, 1H, OH), 9.03 (m, 1H, ArH) 8.98 (m, 1H, ArH), 8.93–8.92 (m, 1H, ArH), 7.98–7.97 (m, 1H, ArH), 7.77–7.75 (m, 1H, ArH), 7.66–7.64 (m, 1H, ArH), 7.47–7.46 (m, 1H, ArH), 7.38–7.32 (m, 4H, PhH), 7.08–7.06 (m, 1H, ArH), 6.51–6.49 (br, 1H, NH), 3.90–3.86 (m, 2H, NCH₂), 3.02–3.00 (m, 2H, ArCH₂), 2.51 (m, 3H, CH₃), 2.33 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 176.0$, 165.5, 162.4, 158.7, 153.6, 152.9, 151.5, 138.8, 138.2, 137.9, 135.9, 132.1, 131.8, 131.4, 131.0, 128.8, 128.1, 127.1, 126.0, 125.8, 122.6, 122.4, 119.0, 115.9, 111.8, 43.1, 34.8, 20.8, 20.7; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₂H₂₅ClN₅O₅ [M+H]⁺, 594.1539; found,594.1534.

2-(2-(2-Hydroxy-5-methylphenyl)-5-nitro-6-(phenethylamino)pyridin-3-yl)-7-methyl-5*H*-chr omeno[2,3-*d*]pyrimidin-5-one (3j)

Yellow solid; Mp:232.1–233.2°C; IR(KBr): 3433.8, 3336.9, 3184.6, 1669.4, 1584.4, 1543.0, 1405.4, 1237.4 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 10.00$ (br, 1H, OH), 9.22 (m, 1H, ArH), 9.16 (m, 1H, ArH), 9.02 (m, 1H, ArH), 7.95–7.92 (m, 2H, ArH), 7.74–7.72 (m, 2H, ArH), 7.57–7.55 (m, 1H, ArH), 7.29–7.25 (m, 5H, ArH), 7.22–7.21 (br, 1H, NH), 3.85–3.84 (m, 2H, 2H)

NCH₂), 2.99–2.98 (m, 2H, ArCH₂), 2.51 (m, 3H, CH₃), 2.44–2.43 (m, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 175.9, 166.7, 165.4, 160.4, 158.8, 153.6, 151.7, 148.8, 139.7, 138.4, 138.2, 137.9, 135.9, 135.8, 132.8, 129.6, 129.2, 128.9, 126.9, 126.7, 125.9, 125.7, 122.4, 121.6, 118.8, 112.1, 43.4, 35.5, 20.8, 20.3; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₂H₂₆N₅O₅ [M+H]⁺, 560.1928; found, 560.1931

2-(2-(2-Hydroxy-5-methylphenyl)-6-((4-methoxyphenethyl)amino)-5-nitropyridin-3-yl)-7-me thyl-5*H*-chromeno[2,3-*d*]pyrimidin-5-one (3k)

Yellow solid; Mp: 265–266°C; IR(KBr): 3439.1, 1595.5, 1385.4, 1103.7, 608.6 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ = 9.39 (br, 1H, OH), 9.05 (m, 1H, ArH), 8.53–8.51 (m, 1H, ArH), 8.03 (m, 1H, ArH), 7.57–7.55 (m, 1H, ArH), 7.45–7.44 (m, 1H, ArH), 7.19 (m, 1H, ArH), 7.13–7.12 (m, 2H, ArH), 7.09–7.08 (m, 2H, ArH), 7.03–7.02 (m, H, ArH), 6.90–6.89 (m, H, ArH), 6.49 (br, H, NH), 3.84–3.81 (m, 2H, NCH₂), 2.98–2.946 (m, 2H, ArCH₂), 2.43 (m, 3H, CH₃), 2.26 (m, 3H, CH₃), 1.87 (m, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 175.9, 169.1, 165.8, 163.3, 159.3, 155.8, 153.6, 150.7, 140.6, 137.4, 136.6, 136.0, 134.7, 133.7, 131.9, 129.6, 128.7, 127.7, 126.2, 126.0, 122.5, 121.4, 120.1, 118.5, 118.2, 111.7, 43.6, 34.8, 21.0, 20.9, 20.4; HRMS (TOF ES⁺): *m/z* calcd for C₃₃H₂₈N₅O₅ [M+H]⁺, 574.2085; found, 574.2084.

2-(2-(2-Hydroxy-5-methylphenyl)-6-((4-methoxyphenethyl)amino)-5-nitropyridin-3-yl)-7-me thyl-5*H*-chromeno[2,3-*d*]pyrimidin-5-one (3l)

Yellow solid; Mp: 185.1–186.9°C; IR(KBr): 3434.9, 3336.5, 1658.6, 1612.8, 1544.7, 1462.0, 1402.3, 1278.4 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.30 (br, 1H, OH), 9.00 (m, 2H, ArH), 8.89 (m, 1H, ArH), 7.98 (m, H, ArH), 7.74–7.73 (m, H, ArH), 7.63–7.62 (m, H, ArH), 7.50–7.49 (m, 1H, ArH), 7.22–7.21 (m, 2H, ArH), 7.06–7.05 (m, H, ArH), 6.87–6.86 (m, H, ArH), 6.51–6.49 (br, H, NH), 3.87–3.84 (m, 2H, NCH₂), 3.73 (s, 3H, OCH₃), 2.96–2.94 (m, 2H, ArCH₂), 2.51–2.50 (m, 3H, CH₃), 2.35 (m, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 175.9, 165.4, 162.5, 158.6, 158.3, 153.6, 152.9, 151.6, 138.3, 137.8, 135.8, 132.0, 131.8, 131.5, 130.1, 128.0, 127.1, 125.9, 125.8, 122.5, 122.4, 118.9, 115.9, 114.3, 111.8, 55.5, 43.6, 34.7, 20.8, 20.7; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₃H₂₈N₅O₆ [M+H]⁺, 590.2034; found, 590.2037.

2-(6-((4-Fluorobenzyl)amino)-2-(2-hydroxy-5-methylphenyl)-5-nitropyridin-3-yl)-7-methyl-5 *H*-chromeno[2,3-*d*]pyrimidin-5-one (3m)

Yellow solid; Mp: 209.5–210.6°C; IR (KBr): 3458.1, 3354.3, 3195.8, 1674.1, 1658.3, 1627.1, 1600.0, 1414.8; ¹H NMR (500 MHz, DMSO- d_6): 9.43–9.41 (m, 1H, ArH), 9.27 (br, 1H, OH), 9.04–8.96 (m, 2H, ArH), 9.97 (m, 1H, ArH), 7.76–7.74 (m, 1H, ArH), 7.64–7.63 (m, 1H, ArH), 7.47–7.44 (m, 1H, ArH), 7.20–7.17 (m, 2H, ArH), 7.01–7.6.99 (m, 2H, ArH), 6.44–6.43 (br, 1H, NH), 4.85–4.84 (m, 2H, ArCH₂), 2.54–2.51 (m, 3H, CH₃), 2.27–2.24 (m, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6): δ = 176.0, 168.7 165.4, 161.9, 161.6 (d, *J* = 240 Hz), 158.7, 153.6, 152.8, 151.3, 138.1, 138.0, 136.3, 135.9, 132.0, 131.9, 129.7, 129.6, 127.9, 126.8, 126.2, 125.8, 122.7, 122.4, 118.9, 115.6 (d, *J* = 23.8Hz), 115.4, 111.9, 44.5, 20.8, 20.6; HRMS (TOF ES⁺): *m/z* calcd for C₃₁H₂₃FN₅O₅ [M+H]⁺, 564.1678; found, 564.1678.

2-(6-((4-Chlorobenzyl)amino)-2-(2-hydroxy-5-methylphenyl)-5-nitropyridin-3-yl)-7-methyl-5 *H*-chromeno[2,3-*d*]pyrimidin-5-one (3n)

Yellow solid; Mp:136.1–137.5°C; IR(KBr): 3436.0, 3337.0, 3201.5, 1658.6, 1641.8, 1619.8, 1461.3, 1402.7 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.45–9.42 (m, H, ArH), 9.26 (br, 1H, OH), 9.00–8.96 (m, 2H, ArH), 7.96–7.95 (m, 1H, ArH), 7.75–7.73 (m, 1H, ArH), 7.63–7.61 (m, 1H, ArH), 7.42–7.40 (m, 4H, ArH), 7.00–6.98 (m, 1H, ArH), 6.87–6.86 (m, 1H, ArH), 6.43–6.42 (br, 1H, NH), 4.84–4.83 (m, 2H, ArCH₂), 2.41 (m, 3H, CH₃), 2.21 (m, 3H, CH₃); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 175.9, 168.7, 165.4, 161.8, 158.7, 153.6, 152.8, 151.3, 139.3, 138.1, 137.9, 135.9, 132.0, 131.6, 129.4, 128.8, 128.7, 127.9, 126.8, 126.3, 125.7, 122.7, 122.4, 118.9, 115.7, 111.8, 44.7, 20.8, 20.6; HRMS (TOF ES⁺): *m/z* calcd for C₃₁H₂₃ClN₅O₅ [M+H]⁺, 580.1382; found, 580.1377.

2-(6-(Benzylamino)-2-(2-hydroxy-5-methylphenyl)-5-nitropyridin-3-yl)-7-methyl-5*H*-chrome no[2,3-*d*]pyrimidin-5-one (30)

Yellow solid; Mp: 148.3–150.1°C; IR(KBr): 3389, 2926, 1668, 1600, 1581, 1424, 1399, 1292 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.41–9.39 (br, 1H, OH), 9.25 (m, 1H, ArH), 8.97–8.96 (m, 2H, ArH), 7.95 (m, 1H, ArH), 7.74–7.72 (m, 1H, ArH), 7.62–7.60 (m, 1H, ArH), 7.43–7.33 (m, 4H, ArH), 7.30–7.27 (m, 2H, ArH), 7.01–7.00 (m, 1H, ArH), 6.44–6.43 (br, 1H, NH), 4.88–4.87 (m, 2H, ArCH₂), 2.41–2.40 (m, 3H, CH₃), 2.23 (m, 3H, CH₃);¹³C NMR (125 MHz, DMSO- d_6): δ = 175.9, 168.7, 165.4, 161.9, 158.6, 153.6, 152.8, 151.4, 140.1, 138.1, 137.9, 135.8, 132.0, 128.9, 128.8, 127.9, 127.7, 127.2, 126.8, 126.1, 125.7, 122.6, 122.3, 118.9, 115.7, 111.8, 45.2, 20.8, 20.6 HRMS (TOF ES⁺): m/z calcd for C₃₁H₂₄N₅O₅ [M+H]⁺, 546.1772; found, 546.1772.

2-(2-(2-Hydroxy-5-methylphenyl)-5-nitro-6-(phenylamino)pyridin-3-yl)-7-methyl-5*H*-chrom eno[2,3-*d*]pyrimidin-5-one (3p)

Yellow solid; Mp:171.8–172.9°C; IR (KBr): 3411.2, 3321.8, 3206.7, 1641.6, 1629.3, 1609.7, 1470.5, 1408.4 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 10.29$ (br, 1H, OH), 9.33 (s, 1H, ArH), 9.09–9.07 (m, 2H, ArH), 7.99 (m, 1H, ArH), 7.81–7.60 (m, 1H, ArH), 7.62–7.76 (m, 3H, ArH), 7.67–7.65 (m, 1H, ArH), 7.43–7.40 (m, 3H, ArH), 7.21–7.19 (m, 1H, ArH), 7.05–7.03 (m, 1H, ArH), 6.44–6.43 (br, 1H, NH), 2.47 (m, 3H, CH₃), 2.28 (m, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 175.3$, 162.1, 155.6, 153.3, 137.3, 137.2, 135.3, 129.0, 127.2, 125.8, 127.2, 125.8, 123.5, 120.9, 118.5, 107.3, 20.7, 20.7; HRMS(TOF ES⁺): m/z calcd for C₃₀H₂₂N₅O₅ [M+H]⁺, 532.1615; found, 532.1610.

7-Chloro-2-(2-(5-chloro-2-hydroxyphenyl)-6-((4-chlorophenethyl)amino)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3-*d*]pyrimidin-5-one (3q)

Yellow solid; Mp:238.5–239.1°C; IR(KBr): 3437.3, 3340.9, 3203.9, 1664.9, 1614.8, 1469.7, 1402.9, 1099.6 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.72$ (br, 1H, OH), 9.32 (m, 1H, ArH), 9.01–8.97 (m, 2H, ArH), 8.08 (m, H, ArH), 7.98–7.96 (m, H, ArH), 7.82–7.81 (m, 1H, ArH), 7.61 (m, 1H, ArH), 7.36–7.26 (m, 5H, ArH), 6.60–6.59 (br, H, NH), 3.87–3.85 (m, 2H, NCH₂), 3.00–2.98 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 175.0$, 168.2, 165.4, 160.8, 158.9, 154.0, 151.6, 138.8, 138.3, 136.6, 131.1, 130.8, 130.6, 129.3, 128.8, 126.4, 125.3, 123.9, 122.0, 121.6, 117.7, 111.7, 43.2, 34.8; HRMS (TOF ES⁺): m/z calcd for C₃₀H₁₉Cl₃N₅O₅ [M+H]⁺, 634.0446; found, 634.0444.

7-Chloro-2-(2-(5-chloro-2-hydroxyphenyl)-5-nitro-6-(phenethylamino)pyridin-3-yl)-5*H*-chro meno[2,3-*d*]pyrimidin-5-one (3r)

Yellow solid; Mp: 193.9–195.1°C; IR(KBr): 3437.1, 3339.4, 3197.0, 1688.5, 1658.8, 1641.7, 1613.9, 1402.7 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.61$ (br, 1H, OH), 9.35 (m, H, ArH), 9.04–9.00 (m, 2H, ArH), 8.11–8.10 (m, H, ArH), 7.99–7.97 (m, H, ArH), 7.84–7.82 (m, H, ArH), 7.67 (m, 1H, ArH), 7.34–7.23 (m, 6H, ArH), 6.65–6.64 (br, H, NH), 3.90–3.86 (m, 2H, NCH₂), 3.02–2.99 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 175.1$, 168.3, 165.4, 160.8, 158.9, 154.1, 154.0, 151.6, 139.7, 138.3, 136.6,130.9, 130.6, 130.6, 129.4, 129.2, 128.9, 126.8, 126.4, 125.4, 124.0,123.3, 122.0, 121.6, 117.7, 111.8, 43.5, 35.6; HRMS (TOF ES⁺): m/z calcd for C₃₀H₂₀Cl₂N₅O₅ [M+H]⁺, 600.0836; found, 600.0836.

7-Chloro-2-(2-(5-chloro-2-hydroxyphenyl)-6-((4-fluorobenzyl)amino)-5-nitropyridin-3-yl)-5 *H*-chromeno[2,3-*d*]pyrimidin-5-one (3s)

Yellow solid; Mp:212.4–213.5°C; IR(KBr): 3438.8, 3339.4, 3200.1, 1664.6, 1615.6, 1459.9, 1403.2, 1275.3 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.60 (br, 1H, OH), 9.46–9.44 (m, 1H, ArH), 9.31 (s, 2H, ArH), 9.02 (m, 1H, ArH), 8.09 (m, 1H, ArH), 7.98–7.96 (m, 1H, ArH), 7.82–7.80 (m, 1H, ArH), 7.45–7.43 (m, 2H, ArH), 7.25–7.14 (m, 4H, ArH), 6.58–6.57 (br, 1H, NH), 4.84–4.83 (m, 2H, ArCH₂); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 175.1, 168.3, 165.4, 161.6 (d, *J* = 241.5 Hz), 161.3, 158.9, 154.0, 151.4, 138.3, 136.6, 136.1, 130.8, 130.6, 130.6, 129.7, 129.7, 129.1, 126.7, 125.4, 124.0, 123.1, 122.2, 121.6, 117.6, 115.5, (d, *J* = 21.0 Hz), 111.8, 44.6; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₁₇Cl₂FN₅O₅ [M+H]⁺, 604.0585; found, 604.0583.

7-Chloro-2-(2-(5-chloro-2-hydroxyphenyl)-6-((2,4-difluorobenzyl)amino)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3-*d*]pyrimidin-5-one (3t)

Yellow solid; Mp:230.3–231.6°C; IR (KBr): 3434.9, 3337.6, 3184.8, 1614.4, 1504.6, 1402.6, 1276.1, 1228.2 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6): $\delta = 9.57$ (br, 1H, OH), 9.40–9.38 (m, H, ArH), 9.33 (m, H, ArH), 9.03 (m, H, ArH), 8.10 (m, 1H, ArH), 7.99–7.97 (m, 1H, ArH), 7.83–7.81 (m, 1H, ArH), 7.49–7.44 (m, 1H, ArH), 7.26–7.22 (m, 2H, ArH), 7.09–7.03 (m, 2H, ArH),

6.59–6.57 (br, H, NH), 4.87–4.86 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO- d_6): δ = 175.1, 168.4, 165.4, 160.1, 158.9, 154.0, 153.9, 151.3, 138.3, 136.6, 130.7, 130.6, 129.0, 127.0, 125.4, 124.0, 123.2, 122.4, 121.6, 117.6, 111.9, 111.7, 104.1, 38.8; HRMS (TOF ES⁺): m/z calcd for C₂₉H₁₆Cl₂F₂N₅O₅ [M+H]⁺, 622.0491; found, 622.0492.

7-Bromo-2-(2-(5-bromo-2-hydroxyphenyl)-6-((4-chlorophenethyl)amino)-5-nitropyridin-3-yl)-5*H*-chromeno[2,3-*d*]pyrimidin-5-one (3u)

Yellow solid; Mp:138.1–139.2°C; IR(KBr): 3442.5, 3342.3, 3198.5, 1664.5, 1613.2, 1587.0, 1459.9, 1404.2 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.66 (br, 1H, OH), 9.33 (m, H, ArH), 9.02–8.98 (m, 2H, ArH), 8.22–8.21 (m, H, ArH), 8.09–8.07 (m, H, ArH), 7.78–7.74 (m, 2H, ArH), 7.42–7.32 (m, 6H, ArH), 6.59–6.57 (br, H, NH), 3.87–3.83 (m, 2H, NCH₂), 3.00–2.98 (m, 2H, ArCH₂); ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 174.9, 168.3, 165.4, 160.6, 158.9, 154.4, 151.6, 139.4, 138.8, 138.3, 133.7, 133.4, 131.4, 131.1, 129.9, 128.9, 128.4, 126.4, 124.3, 122.0, 121.8, 118.4, 118.2, 111.8, 43.3, 34.8; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₀H₁₉Br₂ClN₅O₅ [M+H]⁺, 721.9436; found, 721.9443.

2-(6-(Benzylamino)-2-(5-bromo-2-hydroxyphenyl)-5-nitropyridin-3-yl)-7-bromo-5*H*-chrome no[2,3-*d*]pyrimidin-5-one (3v)

Yellow solid; Mp:134.9–136.1°C; IR(KBr): 3434.8, 3338.6, 3193.8, 1674.4, 1604.3, 1462.4, 1399.7, 1277.3 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.60 (br, 1H, OH), 9.50–9.47 (m, 1H, ArH), 9.30 (s, 1H, ArH), 9.01 (m, 1H, ArH), 8.20 (m, 1H, ArH), 8.07–8.06 (m, 1H, ArH), 7.74–7.72 (m, 1H, ArH), 7.43–7.26 (m, 7H, ArH), 6.54–6.53 (br, 1H, NH), 4.85–4.84 (m, 2H, ArCH₂); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 174.9, 168.4, 165.4, 160.2, 158.9, 154.5, 154.3, 151.5, 139.9, 139.4, 138.3, 133.7, 133.5, 129.6, 128.9, 128.4, 127.9, 127.9, 127.3, 126.7, 124.3, 122.1, 121.8, 118.5, 118.01, 111.9, 110.8, 45.4; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₁₈Br₂N₅O₅ [M+H]⁺, 673.9669; found, 673.9668.

7-Bromo-2-(2-(5-bromo-2-hydroxyphenyl)-6-((4-fluorobenzyl)amino)-5-nitropyridin-3-yl)-5 *H*-chromeno[2,3-*d*]pyrimidin-5-one (3w)

Yellow solid; Mp:145.1–146.2°C; IR(KBr): 3439.1, 3340.8, 3185.9, 1665.9, 1586.5, 1401.3, 1277.3, 1227.6 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 9.60 (br, 1H, OH), 9.48 (s, 1H, ArH), 9.31 (s, 1H, ArH), 9.00 (m, 1H, ArH), 8.22 (m, 1H, ArH), 8.09–8.07 (m, 1H, ArH), 7.76–7.74 (m, 1H, ArH), 7.46–7.44 (m, 2H, ArH), 7.32–7.27 (m, 2H, ArH), 7.20–7.16 (m, 2H, ArH), 6.50 (br, 1H, NH), 4.83–4.82 (m, 2H, ArCH₂); ¹³C NMR (150 MHz, DMSO- d_6): δ = 174.9, 168.3, 165.4, 161.6 (d, *J* = 241.5 Hz), 160.2, 158.9, 154.4, 151.4, 139.4, 138.3, 136.1, 133.7, 133.4, 129.7, 129.7, 129.6, 128.4, 126.7, 124.3, 122.2, 121.8, 118.4, 118.1, 115.5(d, *J* = 17.5Hz), 111.8, 44.6; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₉H₁₇Br₂FN₅O₅ [M+H]⁺, 691.9575; found, 691.9571.

2-(6-((4-Chlorobenzyl)amino)-2-(2-hydroxy-5-isopropylphenyl)-5-nitropyridin-3-yl)-7-isopro pyl-5*H*-chromeno[2,3-*d*]pyrimidin-5-one (3x)

Yellow solid; Mp: 120.5–121.5°C; IR(KBr): 3447.2,3213.4, 2375.8, 1669.0, 1624.4, 1401, 1228.1, 466.1 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.42 (br, 1H, OH), 9.26 (m, H, ArH), 9.03–8.99 (m, 2H, ArH), 7.99 (m, 1H, ArH), 7.84–7.83 (m, 1H, ArH), 7.65–7.63 (m, 1H, ArH), 7.43–7.38 (m, 4H, ArH), 7.07–7.05 (m, 2H, ArH), 6.48–6.47 (br, 1H, NH), 4.87–4.86 (m, 2H, ArCH₂), 3.09 (m, 1H, CH), 2.77 (m, 1H, CH), 1.27–1.26 (m, 6H, 2CH₃), 1.15–1.14 (m, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 176.0, 168.7, 165.4, 162.1, 158.6, 153.8, 153.1, 151.4, 146.5, 139.1, 139.1, 138.2, 135.6, 131.7, 129.4, 129.3, 128.7, 126.5, 126.3, 123.0, 122.8, 122.5, 119.1, 115.8, 111.8, 44.5, 33.3, 32.9, 24.4, 24.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₃₅H₃₀ClN₅O₅ [M+H]⁺, 636.2008; found, 636.2003.

X-ray Structure and Data of 3v

Figure S1. X-Ray crystal structure of 3v.

Empirical formula	$C_{29}H_{16}Br_2FN_5O_5$
Formula weight	693.29
Temperature	296.15 K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, C 1 2/c 1
Unit cell dimensions	a = 27.834(5) Å alpha = 90 deg.
	b = 16.568(3) Å beta = 136.959(2)°. deg.
	c = 23.084(4) Å gamma = 90 deg.
Volume	7266(2) Å ³
Z, Calculated density	8, 1.268 Mg/m3
Absorption coefficient	2.274 mm ⁻¹
F(000)	2752
Theta range for data collection	2.521 to 27.653°.
Index ranges	-36<=h<=36, -21<=k<=21, -28<=l<=29
Reflections collected / unique	28770 / 8060 [R(int) = 0.0682]
Completeness to theta $= 25.242$	99.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.3434
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8060 / 37 / 380
Goodness-of-fit on F^2	1.008
Final R indices [I>2sigma(I)]	R1 = 0.0538, $wR2 = 0.1178$
R indices (all data)	R1 = 0.1361, $wR2 = 0.1441$
Extinction coefficient	n/a
Largest diff. peak and hole	0.562 and -0.585 e.Å-3

Table S1. Crystal data and structure refinement for 3v

Br(1)-C(1)	1.893(3)	C(24)-C(25)	1.410(5)
Br(2)-C(28)	1.888(4)	C(1)-C(9)	1.387(5)
F(1)-C(19)	1.363(5)	C(5)-C(11)	1.391(4)
O(2)-C(6)	1.353(4)	C(29)-H(29)	0.9300
O(2)-C(7)	1.386(4)	C(29)-C(28)	1.387(5)
O(1)-C(4)	1.216(4)	C(11)-H(11)	0.9300
O(5)-H(5)	0.8200	C(7)-C(8)	1.370(5)
O(5)-C(25)	1.350(4)	C(14)-C(22)	1.423(5)
O(3)-N(5)	1.233(4)	C(16)-C(15)	1.507(5)
O(4)-N(5)	1.224(4)	C(16)-C(17)	1.391(5)
N(1)-C(10)	1.340(4)	C(16)-C(21)	1.368(5)
N(1)-C(6)	1.322(4)	C(9)-H(9)	0.9300
N(3)-C(13)	1.330(4)	C(9)-C(8)	1.375(5)
N(3)-C(14)	1.344(4)	C(25)-C(26)	1.395(5)
N(2)-C(10)	1.340(4)	C(8)-H(8)	0.9300
N(2)-C(11)	1.326(4)	C(15)-H(15A)	0.9700
N(4)-H(4)	0.8600	C(15)-H(15B)	0.9700
N(4)-C(14)	1.343(4)	C(28)-C(27)	1.377(6)
N(4)-C(15)	1.463(4)	C(26)-H(26)	0.9300
N(5)-C(22)	1.421(4)	C(26)-C(27)	1.356(6)
C(10)-C(12)	1.464(4)	C(17)-H(17)	0.9300
C(6)-C(5)	1.387(4)	C(17)-C(18)	1.382(6)
C(4)-C(3)	1.470(5)	C(27)-H(27)	0.9300
C(4)-C(5)	1.468(4)	C(21)-H(21)	0.9300
C(2)-H(2)	0.9300	C(21)-C(20)	1.384(6)
C(2)-C(3)	1.402(4)	C(19)-C(20)	1.374(7)
C(2)-C(1)	1.348(5)	C(19)-C(18)	1.344(7)
C(23)-H(23)	0.9300	C(20)-H(20)	0.9300
C(23)-C(12)	1.376(4)	C(18)-H(18)	0.9300
C(23)-C(22)	1.386(4)	C(6)-O(2)-C(7)	118.8(3)
C(12)-C(13)	1.419(5)	C(25)-O(5)-H(5)	109.5
C(13)-C(24)	1.479(5)	C(6)-N(1)-C(10)	115.7(3)
C(3)-C(7)	1.395(4)	C(13)-N(3)-C(14)	121.1(3)
C(24)-C(29)	1.385(5)	C(11)-N(2)-C(10)	115.6(3)
C(15)-N(4)-H(4)	118.2	C(14)-N(4)-H(4)	118.2
O(3)-N(5)-C(22)	119.4(3)	C(14)-N(4)-C(15)	123.5(3)
O(4)-N(5)-O(3)	121.2(3)	C(11)-C(5)-C(4)	124.2(3)
O(4)-N(5)-C(22)	119.4(3)	C(24)-C(29)-H(29)	119.8
N(1)-C(10)-N(2)	126.1(3)	C(24)-C(29)-C(28)	120.5(4)
N(1)-C(10)-C(12)	115.2(3)	C(28)-C(29)-H(29)	119.8

Table S2. Bond lengths [A] and angles [deg] for 3v

N(2)-C(10)-C(12)	118.6(3)	N(2)-C(11)-C(5)	123.7(3)
O(2)-C(6)-C(5)	122.9(3)	N(2)-C(11)-H(11)	118.1
N(1)-C(6)-O(2)	113.2(3)	C(5)-C(11)-H(11)	118.1
N(1)-C(6)-C(5)	123.9(3)	O(2)-C(7)-C(3)	122.3(3)
O(1)-C(4)-C(3)	123.3(3)	C(8)-C(7)-O(2)	115.4(3)
O(1)-C(4)-C(5)	123.1(3)	C(8)-C(7)-C(3)	122.3(3)
C(5)-C(4)-C(3)	113.6(3)	N(3)-C(14)-C(22)	119.4(3)
C(3)-C(2)-H(2)	120.0	N(4)-C(14)-N(3)	117.2(3)
C(1)-C(2)-H(2)	120.0	N(4)-C(14)-C(22)	123.3(3)
C(1)-C(2)-C(3)	120.0(3)	C(17)-C(16)-C(15)	121.1(4)
C(12)-C(23)-H(23)	119.4	C(21)-C(16)-C(15)	120.5(4)
C(12)-C(23)-C(22)	121.3(3)	C(21)-C(16)-C(17)	118.5(4)
C(22)-C(23)-H(23)	119.4	N(5)-C(22)-C(14)	123.3(3)
C(23)-C(12)-C(10)	118.5(3)	C(23)-C(22)-N(5)	117.8(3)
C(23)-C(12)-C(13)	116.6(3)	C(23)-C(22)-C(14)	118.8(3)
C(13)-C(12)-C(10)	124.9(3)	C(1)-C(9)-H(9)	120.2
N(3)-C(13)-C(12)	122.5(3)	C(8)-C(9)-C(1)	119.6(3)
N(3)-C(13)-C(24)	114.2(3)	C(8)-C(9)-H(9)	120.2
C(12)-C(13)-C(24)	123.4(3)	O(5)-C(25)-C(24)	119.5(3)
C(2)-C(3)-C(4)	121.7(3)	O(5)-C(25)-C(26)	121.3(4)
C(7)-C(3)-C(4)	120.7(3)	C(26)-C(25)-C(24)	119.2(4)
C(7)-C(3)-C(2)	117.5(3)	C(7)-C(8)-C(9)	118.9(3)
C(29)-C(24)-C(13)	119.1(3)	C(7)-C(8)-H(8)	120.6
C(29)-C(24)-C(25)	118.7(3)	C(9)-C(8)-H(8)	120.6
C(25)-C(24)-C(13)	122.1(3)	N(4)-C(15)-C(16)	113.8(3)
C(2)-C(1)-Br(1)	120.6(3)	N(4)-C(15)-H(15A)	108.8
C(2)-C(1)-C(9)	121.7(3)	N(4)-C(15)-H(15B)	108.8
C(9)-C(1)-Br(1)	117.7(3)	C(16)-C(15)-H(15A)	108.8
C(6)-C(5)-C(4)	121.3(3)	C(16)-C(15)-H(15B)	108.8
C(6)-C(5)-C(11)	114.5(3)	H(15A)-C(15)-H(15B)	107.7
C(27)-C(26)-C(25)	121.2(4)	C(27)-C(28)-C(29)	120.4(4)
C(27)-C(26)-H(26)	119.4	C(25)-C(26)-H(26)	119.4
C(16)-C(17)-H(17)	119.3	C(29)-C(28)-Br(2)	119.2(4)
C(18)-C(17)-C(16)	121.4(5)	C(27)-C(28)-Br(2)	120.5(3)
C(18)-C(17)-H(17)	119.3	C(18)-C(19)-F(1)	118.8(5)
C(28)-C(27)-H(27)	120.0	C(18)-C(19)-C(20)	122.4(5)
C(26)-C(27)-C(28)	120.1(4)	C(21)-C(20)-H(20)	120.6
C(26)-C(27)-H(27)	120.0	C(19)-C(20)-C(21)	118.8(5)
C(16)-C(21)-H(21)	119.7	C(19)-C(20)-H(20)	120.6
C(16)-C(21)-C(20)	120.6(4)	C(17)-C(18)-H(18)	120.9
C(20)-C(21)-H(21)	119.7	C(19)-C(18)-C(17)	118.3(5)
F(1)-C(19)-C(20)	118.7(5)	C(19)-C(18)-H(18)	120.9

	Table S3. Torsic	on angles [°] for 3v	
Br(1)-C(1)-C(9)-C(8)	177.9(3)	Br(2)-C(28)-C(27)-C(26)	179.7(3)
F(1)-C(19)-C(20)-C(21)	179.1(4)	C(10)-N(1)-C(6)-O(2)	-179.2(3)
F(1)-C(19)-C(18)-C(17)	-178.7(4)	C(10)-N(1)-C(6)-C(5)	0.8(5)
O(2)-C(6)-C(5)-C(4)	-5.7(6)	C(10)-N(2)-C(11)-C(5)	2.3(5)
O(2)-C(6)-C(5)-C(11)	174.9(3)	C(10)-C(12)-C(13)-N(3)	176.6(3)
O(2)-C(7)-C(8)-C(9)	-178.9(3)	C(10)-C(12)-C(13)-C(24)	-3.5(5)
O(1)-C(4)-C(3)-C(2)	-2.6(6)	C(6)-O(2)-C(7)-C(3)	2.6(5)
O(1)-C(4)-C(3)-C(7)	179.1(4)	C(6)-O(2)-C(7)-C(8)	-179.0(3)
O(1)-C(4)-C(5)-C(6)	-174.7(4)	C(6)-N(1)-C(10)-N(2)	6.0(5)
O(1)-C(4)-C(5)-C(11)	4.7(6)	C(6)-N(1)-C(10)-C(12)	-177.4(3)
O(5)-C(25)-C(26)-C(27)	-178.0(4)	C(6)-C(5)-C(11)-N(2)	3.5(5)
O(3)-N(5)-C(22)-C(23)	-170.3(3)	C(4)-C(3)-C(7)-O(2)	-3.6(6)
O(3)-N(5)-C(22)-C(14)	12.0(6)	C(4)-C(3)-C(7)-C(8)	178.1(3)
O(4)-N(5)-C(22)-C(23)	10.8(6)	C(4)-C(5)-C(11)-N(2)	-176.0(3)
O(4)-N(5)-C(22)-C(14)	-166.9(4)	C(2)-C(3)-C(7)-O(2)	178.1(3)
N(1)-C(10)-C(12)-C(23)	-32.2(5)	C(2)-C(3)-C(7)-C(8)	-0.3(6)
N(1)-C(10)-C(12)-C(13)	145.5(3)	C(2)-C(1)-C(9)-C(8)	-2.5(6)
N(1)-C(6)-C(5)-C(4)	174.3(3)	C(23)-C(12)-C(13)-N(3)	-5.7(5)
N(1)-C(6)-C(5)-C(11)	-5.2(5)	C(23)-C(12)-C(13)-C(24)	174.2(3)
N(3)-C(13)-C(24)-C(29)	-46.2(5)	C(12)-C(23)-C(22)-N(5)	-177.4(3)
N(3)-C(13)-C(24)-C(25)	131.7(4)	C(12)-C(23)-C(22)-C(14)	0.4(5)
N(3)-C(14)-C(22)-N(5)	172.8(3)	C(12)-C(13)-C(24)-C(29)	133.8(4)
N(3)-C(14)-C(22)-C(23)	-4.9(5)	C(12)-C(13)-C(24)-C(25)	-48.3(5)
N(2)-C(10)-C(12)-C(23)	144.6(3)	C(13)-N(3)-C(14)-N(4)	-178.8(3)
N(2)-C(10)-C(12)-C(13)	-37.7(5)	C(13)-N(3)-C(14)-C(22)	4.0(5)
N(4)-C(14)-C(22)-N(5)	-4.3(6)	C(13)-C(24)-C(29)-C(28)	179.0(3)
N(4)-C(14)-C(22)-C(23)	178.0(3)	C(13)-C(24)-C(25)-O(5)	-0.6(5)
C(5)-C(4)-C(3)-C(2)	178.4(3)	C(13)-C(24)-C(25)-C(26)	-178.8(3)
C(5)-C(4)-C(3)-C(7)	0.1(5)	C(3)-C(4)-C(5)-C(6)	4.3(5)
C(29)-C(24)-C(25)-O(5)	177.3(3)	C(3)-C(4)-C(5)-C(11)	-176.3(3)
C(29)-C(24)-C(25)-C(26)	-0.9(5)	C(3)-C(2)-C(1)-Br(1)	-178.6(3)
C(29)-C(28)-C(27)-C(26)	-0.2(7)	C(3)-C(2)-C(1)-C(9)	1.7(6)
C(11)-N(2)-C(10)-N(1)	-7.5(5)	C(3)-C(7)-C(8)-C(9)	-0.5(6)
C(11)-N(2)-C(10)-C(12)	176.1(3)	C(24)-C(29)-C(28)-Br(2)	179.7(3)
C(7)-O(2)-C(6)-N(1)	-177.9(3)	C(24)-C(29)-C(28)-C(27)	-0.5(6)
C(7)-O(2)-C(6)-C(5)	2.1(5)	C(24)-C(25)-C(26)-C(27)	0.3(6)
C(14)-N(3)-C(13)-C(12)	1.4(5)	C(1)-C(2)-C(3)-C(4)	-178.7(4)
C(14)-N(3)-C(13)-C(24)	-178.6(3)	C(1)-C(2)-C(3)-C(7)	-0.3(5)
C(14)-N(4)-C(15)-C(16)	99.2(4)	C(1)-C(9)-C(8)-C(7)	1.8(6)
C(15)-C(16)-C(17)-C(18)	178.1(4)	C(16)-C(17)-C(18)-C(19)	-1.2(7)
C(15)-C(16)-C(21)-C(20)	-177.6(4)	C(16)-C(21)-C(20)-C(19)	0.3(7)
C(17)-C(16)-C(15)-N(4)	82.7(4)	C(22)-C(23)-C(12)-C(10)	-177.5(3)
C(17)-C(16)-C(21)-C(20)	0.8(6)	C(22)-C(23)-C(12)-C(13)	4.6(5)
C(21)-C(16)-C(15)-N(4)	-98.9(4)	C(25)-C(24)-C(29)-C(28)	1.0(5)
C(21)-C(16)-C(17)-C(18)	-0.3(7)	C(25)-C(26)-C(27)-C(28)	0.3(7)
C(20)-C(19)-C(18)-C(17)	2.4(8)	C(15)-N(4)-C(14)-N(3)	-12.3(5)
C(18)-C(19)-C(20)-C(21)	-2.0(8)	C(15)-N(4)-C(14)-C(22)	164.9(4)

Figure S2. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3a

Figure S3. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3a

Figure S6. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound **3c**

Figure S9. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 3d

Figure S10. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3e

S27

Figure S12. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3f

Figure S13. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 3f

Figure S14. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3g

Figure S16. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3h

Figure S17. ¹³C NMR (150 MHz, CDCl₃) spectra of compound **3h**

Figure S18. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound 3i

Figure S19. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3i

Figure S20. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3j

Figure S21. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3j

Figure S22. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3k

Figure S23. ¹³C NMR (150 MHz, CDCl₃) spectra of compound 3k

Figure S24. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 31

Figure S25. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 31

Figure S28. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3n

Figure S31. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 30

Figure S32. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3p**

Figure S34. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3q

Figure S35. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 3q

Figure S36. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3r

Figure S38. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3s

Figure S39. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3s

98

00

Figure S42. ¹H NMR (500 MHz, DMSO-*d*₆) spectra of compound 3u

Figure S43. ¹³C NMR (125 MHz, DMSO-*d*₆) spectra of compound 3u

Figure S44. ¹H NMR (600MHz, DMSO-*d*₆) spectra of compound 3v

Figure S45. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound **3v**

Figure S46. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3w

Figure S47. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound **3w**

Figure S52. HPLC of the reaction mixture

Figure S55. HRMS of intermediate 4/5/6

Figure S57. HRMS of intermediate 8

Figure S58. HRMS of intermediate 9 and target compound 3k

Figure S59. HRMS of plasticizer

References

[1] (a) Mertens, H.; Troschütz, R. Synthese primärer Nitroketenaminale. *Arch. Pharm.* 1986, *319*, 161–167; (b) Zi, Q.-X.; Yang, C.-L.; Li, K.; Luo, Q.; Lin, J.; Yan, S.-J. Multicomponent Cascade Reaction by Metal-Free Aerobic Oxidation for Synthesis of Highly Functionalized 2-Amino-4-coumarinyl-5-arylpyrroles. *J. Org. Chem.* 2020, *85*, 327–338.