Supporting Information

Continuous-flow electrosynthesis of 4-({sulfonylmethyl}isoquinoline-1,3(2H,4H)-diones from N-Alkyl-N-methacryloyl benzamides under metal-free and oxidant-free

Jia Xu,* Zhao Yang,* Jiawei Hua,* Yang Lin,* Mixue Bian,* Yuguang Li,* Chengkou Liu,* Wei He,* Zheng Fang,** Kai Guo**a,d

a College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China. E-mail: guok@njtech.edu.cn; Fax: +862558139935; Tel: +86 2558139926
b Institute of Nanjing Advanced Biomaterials & Processing Equipment, Nanjing 211200, China
c College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210003, China
d State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China

Table of Content

1. General information ..2
2. Optimization of reaction conditions in electrolytic batch reactor ..3
3. Electrochemistry continuous flow system ..5
4. General procedure for the synthesis of product 3a in electrochemistry continuous flow system ...7
5. Procedure for cyclic voltammetry (CV) ..8
6. Faradaic efficiency of 3a ..9
7. Analytical data of products 3-7 ..10
8. References ..24
9. 1H NMR, 13C NMR and 19F NMR spectra ..25
1. General information

Unless otherwise indicated, all the regents and solvents were purchased from commercial suppliers and used without any further purification. 1H spectra were recorded in CDCl$_3$ or (Methyl sulfoxide)-d6 on 400MHz NMR spectrometers and resonances (\bullet) are given in parts per million relatives to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = penta, dd = doublet of doublets, dt = doublet of triplets, ddt = doublet of doublet of triplets, dtd = doublet of triplet of doublets, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. 13C NMR were recorded at 100 MHz and chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent. Column chromatography was generally performed on Silicycle silica gel (200-300 mesh). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized the course of the reactions using a UV light (254 nm or 365 nm). High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).
2. Optimization of reaction conditions in electrolytic batch reactor

Table S1. Optimization of reaction conditions in electrolytic batch

<table>
<thead>
<tr>
<th>Entry</th>
<th>Anode/cathode</th>
<th>Solvent</th>
<th>Electrolyte(equiv.)</th>
<th>I (mA)</th>
<th>Yield<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C (+)/Pt (-)</td>
<td>DCE</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>C (+)/Pt (-)</td>
<td>DMF</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>C (+)/Pt (-)</td>
<td>MeCN</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>C (+)/Pt (-)</td>
<td>1,4-Dioxane/H₂O (4/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (2/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (4/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (5/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>LiClO₄ (2)</td>
<td>15</td>
<td>71</td>
</tr>
<tr>
<td>10</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NBF₄ (2)</td>
<td>15</td>
<td>67</td>
</tr>
<tr>
<td>11</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄Ni (2)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>15</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>20</td>
<td>41</td>
</tr>
<tr>
<td>16</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (1)</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>17</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (3)</td>
<td>15</td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>Pt (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>C (+)/C (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>C/PVDF (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>71</td>
</tr>
<tr>
<td>21</td>
<td>C (+)/Cu (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>22</td>
<td>C (+)/Pt (-)</td>
<td>MeCN/H₂O (3/1)</td>
<td>nBu₄NPF₆ (2)</td>
<td>15</td>
<td>75<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Reaction conditions: undivided cell, graphite anode, Pt plate cathode, constant current = 15 mA, 1a (0.5 mmol), 2a (1.5 mmol), electrolyte (1.0 mmol), solvent (10 mL), under air, room temperature, 3h. ^b Isolated yield. ^c N₂ instead of air.

A series of conditions including electrode, electrolyte, current, solvent and reactant equivalent ratio were also screened in a batch reactor. The N-Alkyl-N-methacryloyl benzamides 1a and 4-methylbenzenesulfonyl hydrazide 2a were chosen as the model reaction to search for optimal reaction conditions. With nBu₄NPF₆ as the electrolyte and the current of the 15 mA, a series of solvents were explored. The results disclosed that the cosolvent of CH₃CN/H₂O (v/v=3:1) might be the best choice (Table S1 entries 1-8). Moreover, the effect of
various electrolytes was also investigated. However, the other electrolytes such as LiClO$_4$, nBu$_4$NBF$_4$ and nBu$_4$NI could not improve the yield of 3a (Table S1 entries 9-11). Compared with the reaction condition of 15 mA, the reaction conditions of 5, 10, and 20 mA all resulted in a lower conversion (Table S1, entries 13–15). Further exploration focused on electrochemical parameters, and the reaction was shown to fail to proceed without the applied constant current (Table S1, entry 12). Either decreasing or increasing the equivalents of nBu$_4$NPF$_6$ led to lower yield (Table S1, entries 16–17). In addition, the reaction with different electrodes could resulted in a drop of the yields of product 3a (Table S1 entries 18-21). Finally, N$_2$ atmosphere instead of air was tested, and the results show that the yield of product 3a was no obvious change (Table S1 entries 22).

Figure S1 electrodes and batch reactor

graphite rod anode: Φ 6 mm; Pt plate cathode: 20 mm \times 20 mm \times 0.1 mm.
3. Electrochemistry continuous flow system

Reactions are performed in a novel flow electrochemistry system (the Asia Flux module). This system includes pumps, flow cell, working prototype cell holder and control module. The flow cell consists of pairs of electrodes separated by a gasket. Electrode materials include stainless steel, carbon, magnesium and stainless steel with a platinum coating (also discussing copper, tin, and titanium) and the cell can be divided by a membrane to isolate the chemistry at the anode from the chemistry at the cathode. The working prototype cell holder holds the electrodes in place, enables quick fluidic and electrical connections and locates in the syrris range of temperature controllers (e.g. The Asia Chip Climate Controller). The control module controls the current/voltage applied to the electrodes, displays the temperature and locates the holder on the front of the module for room temperature applications.

Figure S2 Electrochemistry continuous flow system

Figure S3 Flow cell holder
Figure S4 Flow cell materials and gasket

Carbon plate: 50 mm x 40 mm x 2.5 mm; Pt plate: 50 mm x 40 mm x 2.5 mm; flow cell volume =225 µL
4. General procedure for the synthesis of product 3a in electrochemistry continuous flow system

General procedure for synthesis of N-methyl benzamide

A 100-mL round bottom flask was charged with methylamine hydrochloride (15 mmol), K$_2$CO$_3$ (20 mmol) in Ethyl acetate (20 mL) and H$_2$O (10 mL) and benzoyl chloride (10 mmol) was added slowly to the reaction mixture at 0°C. After that, the residue was stirred at room temperature for 4-6 h. The reaction was completed by TLC monitoring, the organic phase was separated, dried over MgSO$_4$, and concentrated under vacuum. The resulting residue was purified by flash silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 1: 1) to afford the desired products with 93% yield.

General procedure for synthesis of N-methacryloyl-N-methylbenzamide 1a

A 100-mL round bottom flask was charged with N-methyl benzamide (10 mmol), DMAP (1 mmol), triethylamine (20 mmol) in dichloromethane (20 mL) and methacryloyl chloride (15 mmol) was added slowly to the reaction mixture at 0°C. After that, the residue was stirred at room temperature for 4-6 h. The reaction was completed by TLC monitoring, the organic phase was separated, dried over MgSO$_4$, and concentrated under vacuum. The resulting residue was purified by flash silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 3: 1) to afford the desired products 1a with 77% yield.

General procedure for the preparation of sulfonyl hydrazides 2a

Sulfonyl hydrazides were prepared according to a literature procedure. The
hydrazinemonohydrate (30 mmol) was added dropwise into the solution of sulfonyl chloride (10 mmol) in THF (50 mL) under nitrogen at 0 °C. Subsequently, the mixture was further stirred at 0 °C for 30 minutes. After the completion of the reaction, the solvent was removed by evaporation, and the residue was extracted with dichloromethane (3 x 20 mL), and the combined organic layer was washed with water, and brine, and dried over Na₂SO₄. Concentration in vacuum followed by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 1: 1) to give the desired product 2a in yields range from 70-95%.

General procedure for the synthesis of product 3a in electrochemistry continuous flow system

![Chemical structure diagram](image)

First, assembled and installed the flow electrochemistry device, the anode as graphite plate, cathode as platinum plate and the cell volume was 225 μL. Second, 1a (0.5 mmol), 2a (1 mmol, 2 equiv.) and nBu₄NPF₆ (1.0 mmol, 2 equiv.) were dissolved in CH₃CN/H₂O (10 mL, v/v = 3/1). The reaction mixture was pumped into the flow cell via a syringe and electrolyzed at a constant current of 15 mA at room temperature. The flow rate was 225 μL/min and residence time 1 minute. The out flow of the reaction mixture was collected. The solvent was removed with a rotary evaporator. The pure product 3a was obtained by flash chromatography on silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 3: 2).

5. Procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. (1) A mixed solvent (MeCN/H₂O = 3/1, 10 mL) containing nBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry
experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V. (2) 1a (0.5 mmol) and a mixed solvent (MeCN/H₂O = 3/1, 10 mL) containing nBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V. (3) 2a (1 mmol) and a mixed solvent (MeCN/H₂O = 3/1, 10 mL) containing nBu₄NPF₆ (1 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 0.10 V/s, ranging from 0 V to 2.5 V.

![Figure S5 Cyclic voltammogram: (1) black; (2) 1a 0.5 mmol; (3) 2a 1 mmol.](image)

6. Faradaic efficiency of 3a³

\[
\eta = \frac{\text{moles of product (measured by isolated)}}{\int \left(\frac{mA}{cm^2} \right) \times t(s) / nF} \times 100\% = 31.79\%
\]
7. Analytical data of products 34-7

2,4-dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3a) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 79% isolated yield, m. p. = 140.2-142.1 °C. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.26 (d, \(J = 7.5\) Hz, 1H), 7.43 – 7.36 (m, 2H), 7.33 (d, \(J = 8.3\) Hz, 2H), 7.17 (d, \(J = 7.3\) Hz, 1H), 7.14 (d, \(J = 8.1\) Hz, 2H), 4.43 (d, \(J = 14.6\) Hz, 1H), 3.91 (d, \(J = 14.6\) Hz, 1H), 3.39 (s, 3H), 2.38 (s, 3H), 1.58 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) \(\delta\) 174.38, 163.83, 144.52, 139.12, 137.10, 133.45, 129.68, 129.16, 128.02, 127.59, 125.97, 124.70, 64.78, 45.35, 31.58, 27.54, 21.59. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{19}\)H\(_{20}\)NSO\(_4\) \(358.1108\) found \(358.1172\).

2,4,6-trimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3b) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 77% isolated yield, m. p. = 196.7-199.3 °C. \(^1\)H NMR (400 MHz, Chloroform-d) \(\delta\) 8.13 (d, \(J = 8.0\) Hz, 1H), 7.26 (d, \(J = 8.3\) Hz, 2H), 7.16 (d, \(J = 7.3\) Hz, 1H), 7.10 (d, \(J = 8.0\) Hz, 2H), 6.78 (s, 1H), 4.44 (d, \(J = 14.7\) Hz, 1H), 3.89 (d, \(J = 14.7\) Hz, 1H), 3.40 (s, 3H), 2.37 (s, 3H), 2.15 (s, 3H), 1.55 (s, 3H). \(^{13}\)C NMR (100 MHz, Chloroform-d) \(\delta\) 174.43, 163.79, 144.31, 144.22, 138.77, 137.20, 129.47, 129.18, 129.03, 127.48, 126.38, 122.32, 64.76, 45.21, 31.51, 27.43, 21.51, 21.49. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{20}\)H\(_{22}\)NSO\(_4\) \(372.1624\) found \(372.1653\).
6-methoxy-2,4-dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3c) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 75% isolated yield, m. p. = 178.0-180.4°C. 1H NMR (400 MHz, Chloroform-d) δ 8.21 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 6.89 (dd, J = 8.8, 2.4 Hz, 1H), 6.47 (d, J = 2.4 Hz, 1H), 4.45 (d, J = 14.7 Hz, 1H), 3.84 (d, J = 14.7 Hz, 1H), 3.70 (s, 3H), 3.38 (s, 3H), 2.38 (s, 3H), 1.56 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 174.38, 163.60, 163.45, 144.39, 141.09, 137.27, 131.47, 129.55, 127.61, 117.74, 114.14, 110.85, 64.79, 55.35, 45.58, 31.71, 27.41, 21.55. HRMS (TOF) m/z [M + H]+ Calcd for C20H22NSO5 388.1213 found 388.1282.

6-(tert-butyl)-2,4-dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3d) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 74% isolated yield, m. p. = 167.1-168.4°C. 1H NMR (400 MHz, Chloroform-d) δ 8.19 (d, J = 8.3 Hz, 1H), 7.43 (dd, J = 8.4, 1.7 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 1.6 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 4.46 (d, J = 14.7 Hz, 1H), 3.96 (d, J = 14.7 Hz, 1H), 3.39 (s, 3H), 2.35 (s, 3H), 1.59 (s, 3H), 1.20 (s, 9H). 13C NMR (100 MHz, Chloroform-d) δ 174.64, 163.81, 157.36, 144.44, 138.85, 137.34, 129.63, 129.06, 127.71, 125.57, 122.49, 122.32, 65.18, 45.65, 35.17, 31.79, 30.88, 27.45, 21.60. HRMS (TOF) m/z [M + H]+ Calcd for C23H28NSO4 414.1734 found 414.1763.

2,4-dimethyl-6-phenyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3e) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 70% isolated yield, m. p. = 192.9-194.1°C. 1H NMR (400 MHz, Chloroform-d) δ 8.33 (d, J = 8.2 Hz, 1H), 7.60 (dd, J = 8.2, 1.6 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.35 (dd, J = 7.8, 1.7 Hz, 2H),
7.27 (s, 1H), 7.26 (d, J = 1.9 Hz, 1H), 7.23 (d, J = 1.7 Hz, 1H), 7.01 (d, J = 8.0 Hz, 2H), 4.52 (d, J = 14.8 Hz, 1H), 4.02 (d, J = 14.8 Hz, 1H), 3.43 (s, 3H), 2.16 (s, 3H), 1.61 (s, 3H).

13C NMR (100 MHz, Chloroform-d) δ 174.50, 163.72, 146.20, 144.62, 139.41, 138.82, 137.22, 129.83, 129.62, 128.89, 128.62, 127.45, 127.20, 126.76, 124.56, 123.65, 65.00, 45.64, 31.57, 27.60, 21.44.

HRMS (TOF) m/z [M + H]+ Calcd for C25H24NSO4+ 434.1421 found 434.1397.

6-fluoro-2,4-dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3f) white solid was obtained by column chromatography on silica gel (elucent: Petroleum ether/ethyl acetate = 2 : 1) in 75% isolated yield, m. p. = 186.3-189.2 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.33 – 8.25 (m, 1H), 7.37 (d, J = 6.8 Hz, 2H), 7.17 (d, J = 7.7 Hz, 2H), 7.13 – 7.06 (m, 1H), 6.81 (dd, J = 9.2, 2.4 Hz, 1H), 4.46 – 4.39 (m, 1H), 3.83 (d, J = 14.7 Hz, 1H), 3.40 (s, 3H), 2.39 (s, 3H), 1.57 (s, 3H).

13C NMR (100 MHz, Chloroform-d) δ 173.88, 165.77 (d, J=254 Hz), 162.88, 144.84, 142.07 (d, J=9 Hz), 136.99, 132.22 (d, J=10 Hz), 129.76, 127.51, 121.26 (d, J=3 Hz), 116.00 (d, J=22 Hz), 112.99 (d, J=23 Hz), 64.63, 45.51, 31.44, 27.57, 21.55. 19F NMR (400 MHz, Chloroform-d) δ -103.64 (s, 1F). HRMS (TOF) m/z [M + H]+ Calcd for C19H19NFSO4+ 376.1013 found 376.1094.

6-chloro-2,4-dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3g) white solid was obtained by column chromatography on silica gel (elucent: Petroleum ether/ethyl acetate = 2 : 1) in 77% isolated yield, m. p. = 208.1-210.9 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.20 (d, J = 8.5 Hz, 1H), 7.34 (dd, J = 8.5, 1.9 Hz, 1H), 7.30 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 1.9 Hz, 1H), 4.44 (d, J = 14.8 Hz, 1H), 3.83 (d, J = 14.8 Hz, 1H), 3.42 (s, 3H), 2.40 (s, 3H), 1.58 (s, 3H).

13C NMR (100 MHz, Chloroform-d) δ 173.72, 162.97, 144.88, 140.53, 140.08, 136.88, 130.79, 129.79, 128.63, 127.33, 126.22, 123.38,
64.65, 45.29, 31.33, 27.66, 21.60. HRMS (TOF) m/z [M + H]^+ Calcd for C_{19}H_{19}NCISO_4^+ 392.0718 found 392.0727.

2,4-dimethyl-4-(tosylmethyl)-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-dione (3h) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 63% isolated yield, m. p. = 192.6-194.1 °C. ^1H NMR (400 MHz, Chloroform-d) δ 8.41 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.33 – 7.20 (m, 3H), 7.09 (d, J = 8.1 Hz, 2H), 4.47 (d, J = 14.9 Hz, 1H), 4.01 (d, J = 14.9 Hz, 1H), 3.45 (s, 3H), 2.35 (s, 3H), 1.62 (s, 3H). ^13C NMR (100 MHz, Chloroform-d) δ 173.71, 162.72, 144.95, 139.86, 136.75, 134.74 (q, J = 3 Hz), 129.99, 129.75, 127.80, 127.16, 124.82 (q, J = 3 Hz), 123.14 (q, J = 4 Hz), 122.95 (d, J = 272 Hz), 64.79, 45.37, 31.04, 27.73, 21.42. ^19F NMR (400 MHz, Chloroform-d) δ -63.13 (s, 3F). HRMS (TOF) m/z [M + H]^+ Calcd for C_{20}H_{19}NF_3SO_4^+ 426.0981 found 426.0964.

2,4-dimethyl-6-nitro-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3i) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 47% isolated yield, m. p. = 208.5-209.0 °C. ^1H NMR (400 MHz, Chloroform-d) δ 8.48 (d, J = 8.7 Hz, 1H), 8.20 (dd, J = 8.7, 2.1 Hz, 1H), 7.90 (d, J = 2.1 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 4.50 (d, J = 14.8 Hz, 1H), 3.95 (d, J = 14.8 Hz, 1H), 3.47 (s, 3H), 2.35 (s, 3H), 1.66 (s, 3H). ^13C NMR (100 MHz, Chloroform-d) δ 173.27, 162.09, 150.32, 145.03, 140.56, 136.80, 130.96, 129.94, 129.52, 127.25, 122.70, 121.56, 64.52, 45.52, 31.05, 27.95, 21.43. HRMS (TOF) m/z [M + H]^+ Calcd for C_{19}H_{19}N_2SO_6^+ 403.0958 found 403.0931.
2-ethyl-4-methyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3j) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 72% isolated yield, m. p. = 112.7-114.1 °C. \(^1H \) NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 8.27 (dd, \(J = 7.7, 1.5 \) Hz, 1H), 7.42 – 7.32 (m, 4H), 7.20 – 7.10 (m, 3H), 4.44 (d, \(J = 14.6 \) Hz, 1H), 4.08 (q, \(J = 7.1 \) Hz, 2H), 3.91 (d, \(J = 14.6 \) Hz, 1H), 2.38 (s, 3H), 1.56 (s, 3H), 1.29 (t, \(J = 7.1 \) Hz, 3H). \(^{13}C \) NMR (100 MHz, Chloroform-\(d \)) \(\delta \) 173.97, 163.37, 144.44, 139.21, 137.37, 133.34, 129.69, 129.20, 127.96, 127.52, 125.88, 124.87, 64.71, 45.36, 36.06, 31.59, 21.59, 12.74. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{20}\)H\(_{22}\)NSO\(_4\) \(^+ \) 372.1264 found 372.1255.

4-methyl-2-propyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3k) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 70% isolated yield, m. p. = 125.3-127.8 °C. \(^1H \) NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 8.28 (dd, \(J = 7.5, 1.7 \) Hz, 1H), 7.47 – 7.34 (m, 4H), 7.17 (t, \(J = 7.3 \) Hz, 3H), 4.46 (d, \(J = 14.6 \) Hz, 1H), 4.04 – 3.93 (m, 2H), 3.89 (d, \(J = 14.5 \) Hz, 1H), 2.39 (s, 3H), 1.73 (dt, \(J = 15.4, 7.5 \) Hz, 2H), 1.57 (s, 3H), 0.99 (t, \(J = 7.5 \) Hz, 3H). \(^{13}C \) NMR (100 MHz, Chloroform-\(d \)) \(\delta \) 174.15, 163.53, 144.43, 139.20, 137.38, 133.29, 129.67, 129.30, 127.96, 125.78, 124.82, 64.57, 45.44, 42.45, 31.78, 21.57, 20.86, 11.47. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{21}\)H\(_{24}\)NSO\(_4\) \(^+ \) 386.1421 found 386.1479.

2-isopropyl-4-methyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3l) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 88% isolated yield, m. p. = 135.5-136.7 °C. \(^1H \) NMR (400 MHz, Chloroform-\(d \)) \(\delta \) 8.26 (dd, \(J = 7.7, 1.5 \) Hz, 1H), 7.36 – 7.27 (m, 4H), 7.18 – 7.06 (m, 3H), 4.43 (d, \(J = 14.6 \) Hz, 1H), 4.07 (q, \(J = 7.1 \) Hz, 2H), 3.90 (d, \(J = 14.6 \) Hz, 1H), 2.50 (s, 3H), 1.58 (s, 3H), 1.01 (t, \(J = 7.1 \) Hz, 3H). \(^{13}C \) NMR (100 MHz, Chloroform-\(d \)) \(\delta \) 174.12, 163.43, 144.43, 139.20, 137.38, 133.29, 129.67, 129.30, 127.96, 125.78, 124.82, 64.57, 45.44, 42.45, 31.78, 21.57, 20.86, 11.47. HRMS (TOF) m/z [M + H]\(^+\) Calcd for C\(_{21}\)H\(_{23}\)NSO\(_4\) \(^+ \) 388.1393 found 388.1442.
1) in 71% isolated yield, m. p. = 141.1-142.4 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.26 (dd, J = 7.8, 1.4 Hz, 1H), 7.41 – 7.30 (m, 4H), 7.14 (d, J = 8.0 Hz, 2H), 7.13 – 7.10 (m, 1H), 5.25 (p, J = 6.9 Hz, 1H), 4.44 (d, J = 14.5 Hz, 1H), 3.87 (d, J = 14.5 Hz, 1H), 2.38 (s, 3H), 1.59 – 1.51 (m, 9H).
13C NMR (100 MHz, Chloroform-d) δ 174.35, 163.90, 144.30, 139.12, 137.61, 133.08, 129.65, 129.26, 127.88, 127.44, 125.59, 125.41, 64.74, 45.85, 45.67, 31.46, 21.56, 19.54, 19.22. HRMS (TOF) m/z [M + H]+ Calcd for C21H24NSO4 386.1421 found 386.1471.

2-butyl-4-methyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3m) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 66% isolated yield, m. p. = 133.2-135.1 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.28 (dd, J = 7.6, 1.7 Hz, 1H), 7.44 – 7.34 (m, 4H), 7.16 (td, J = 5.4, 4.9, 2.4 Hz, 3H), 4.46 (d, J = 14.6 Hz, 1H), 4.01 (td, J = 7.7, 3.0 Hz, 2H), 3.89 (d, J = 14.6 Hz, 1H), 2.39 (s, 3H), 1.73 – 1.62 (m, 2H), 1.56 (s, 3H), 1.43 (dt, J = 15.1, 7.5 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, Chloroform-d) δ 174.10, 163.51, 144.41, 139.19, 137.36, 133.28, 129.66, 129.27, 127.95, 127.55, 125.78, 124.84, 64.58, 45.43, 40.75, 31.75, 29.54, 21.57, 20.30, 13.85. HRMS (TOF) m/z [M + H]+ Calcd for C22H26NSO4 400.1577 found 400.1542.

4-methyl-2-phenyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3n) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 62% isolated yield, m. p. = 213.1-214.5 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.36 – 8.27 (m, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.49 – 7.41 (m, 5H), 7.40 – 7.31 (m, 2H), 7.24 (d, J = 4.3 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 4.45 (d, J = 14.5 Hz, 1H), 3.94 (d, J = 14.5 Hz, 1H), 2.39 (s, 3H), 1.70
(s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 174.51, 163.87, 144.49, 139.39, 137.49, 135.55, 133.70, 129.78, 129.69, 129.37, 128.74, 128.46, 128.20, 127.55, 126.01, 124.99, 65.23, 45.91, 31.46, 21.61. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{24}$H$_{22}$NSO$_4^+$ 420.1264 found 420.1231.

2-benzyl-4-methyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3o) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 68% isolated yield, m. p. = 174.1-177.9°C. 1H NMR (400 MHz, Chloroform-d) 8.28 (dd, J = 5.8, 3.5 Hz, 1H), 7.46 (d, J = 7.3 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.35 (dd, J = 8.4, 2.3 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 7.25 – 7.19 (m, 2H), 7.15 (d, J = 8.0 Hz, 2H), 5.29 – 5.16 (m, 2H), 4.46 (d, J = 14.6 Hz, 1H), 3.92 (d, J = 14.6 Hz, 1H), 2.38 (s, 3H), 1.52 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 174.31, 163.59, 144.53, 139.43, 137.51, 137.03, 133.60, 129.72, 129.50, 128.46, 128.44, 128.06, 127.64, 127.38, 125.85, 124.75, 64.45, 45.87, 44.06, 31.78, 21.62. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{25}$H$_{24}$NSO$_4^+$ 434.1421 found 434.1472.

8-fluoro-2,4-dimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3p) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 61% isolated yield, m. p. = 177.1-178.0°C. 1H NMR (400 MHz, Chloroform-d) 7.52 – 7.40 (m, 3H), 7.22 (d, J = 7.6 Hz, 2H), 7.12 (t, J = 9.3 Hz, 2H), 4.45 (d, J = 14.5 Hz, 1H), 3.89 (d, J = 14.6 Hz, 1H), 3.37 (s, 3H), 2.41 (s, 3H), 1.59 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 173.55, 162.63 (d, J = 266 Hz), 160.71 (d, J = 5Hz), 144.81, 141.74, 137.18, 134.55 (d, J = 11 Hz), 129.78, 127.66, 122.01, 116.61 (d, J = 22Hz), 113.74, 64.76, 45.38, 31.87, 27.41, 21.62. 19F NMR (400 MHz, Chloroform-d) δ -108.65 (s, 1F). HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{19}$H$_{19}$NFSO$_4^+$ 376.1013 found 376.1044.
2,4,8-trimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3q) white solid was obtained by column chromatography on silica gel (eluient: petroleum ether/ethyl acetate = 2 : 1) in 67% isolated yield, m. p. = 182.3-184.1°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.42 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 7.7 Hz, 1H), 4.45 (d, J = 14.5 Hz, 1H), 3.87 (d, J = 14.5 Hz, 1H), 3.37 (s, 3H), 2.81 (s, 3H), 2.40 (s, 3H), 1.58 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 174.04, 164.34, 144.51, 143.01, 140.54, 137.35, 132.32, 132.09, 129.62, 127.73, 124.20, 123.00, 65.01, 45.57, 32.18, 27.54, 24.16, 21.61. HRMS (TOF) m/z [M + H]^+ Calcd for C₂₀H₂₂NSO₄ 372.1624 found 372.1673.

2,4,5,7-tetramethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3r) white solid was obtained by column chromatography on silica gel (eluient: petroleum ether/ethyl acetate = 2 : 1) in 71% isolated yield, m. p. = 202.2-204.1°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.07 (s, 1H), 7.35 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.02 (s, 1H), 4.48 (d, J = 14.8 Hz, 1H), 4.24 (d, J = 14.8 Hz, 1H), 3.36 (s, 3H), 2.40 (s, 6H), 2.36 (s, 3H), 1.66 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 175.59, 164.25, 144.53, 139.21, 138.00, 136.66, 135.72, 133.63, 129.48, 128.35, 127.79, 125.72, 62.00, 46.05, 27.82, 27.74, 22.36, 21.63, 20.72. HRMS (TOF) m/z [M + H]^+ Calcd for C₂₁H₂₄NSO₄ 386.1421 found 386.1472.

2,4,7-trimethyl-4-(tosylmethyl)isoquinoline-1,3(2H,4H)-dione (3s) white solid was obtained by column chromatography on silica gel (eluient: petroleum ether/ethyl acetate = 2 : 1) in 62%
isolated yield, m. p. = 134.4-136.8°C. 1H NMR (400 MHz, Chloroform-\textit{d}) \(\delta \) 8.04 (s, 1H), 7.32 (d, \(J = 8.3 \text{ Hz}, 2\)H), 7.12 (d, \(J = 8.0 \text{ Hz}, 3\)H), 7.03 (d, \(J = 8.0 \text{ Hz}, 1\)H), 4.39 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.89 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.38 (s, 3H), 2.38 (s, 6H), 1.55 (s, 3H). 13C NMR (100 MHz, Chloroform-\textit{d}) \(\delta \) 174.49, 163.98, 144.34, 138.06, 137.18, 136.20, 134.38, 129.54, 129.08, 127.59, 125.93, 124.46, 64.98, 45.02, 31.41, 27.48, 21.53, 20.98. HRMS (TOF) m/z [M + H]+ Calcd for C\textsubscript{20}H\textsubscript{22}NSO\textsubscript{4}+ 372.1624 found 372.1633.

2,4-dimethyl-4-((phenylsulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione (3t) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 77% isolated yield, m. p. = 175.1-177.1°C. 1H NMR (400 MHz, Chloroform-\textit{d}) \(\delta \) 8.28 (dd, \(J = 7.7, 1.4 \text{ Hz}, 1\)H), 7.52 (t, \(J = 7.4 \text{ Hz}, 1\)H), 7.46 (d, \(J = 7.2 \text{ Hz}, 2\)H), 7.42 - 7.35 (m, 3H), 7.35 - 7.32 (m, 1H), 7.15 (d, \(J = 7.6 \text{ Hz}, 1\)H), 4.46 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.94 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.41 (s, 3H), 1.59 (s, 3H). 13C NMR (100 MHz, Chloroform-\textit{d}) \(\delta \) 174.39, 163.82, 140.08, 138.98, 133.49, 133.48, 129.23, 129.12, 128.16, 127.52, 125.87, 124.72, 64.74, 45.37, 31.53, 27.60. HRMS (TOF) m/z [M + H]+ Calcd for C\textsubscript{18}H\textsubscript{18}NSO\textsubscript{4}+ 344.0951 found 344.0955.

4-(((4-fluorophenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3u) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 75% isolated yield, m. p. = 165.2-167.6°C. 1H NMR (400 MHz, Chloroform-\textit{d}) \(\delta \) 8.29 (dd, \(J = 6.9, 2.3 \text{ Hz}, 1\)H), 7.52 - 7.46 (m, 2H), 7.46 - 7.37 (m, 2H), 7.17 (dd, \(J = 7.5, 1.4 \text{ Hz}, 1\)H), 7.06 - 7.04 (m, 2H), 6.98 (d, \(J = 7.6 \text{ Hz}, 1\)H), 4.46 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.94 (d, \(J = 14.6 \text{ Hz}, 1\)H), 3.41 (s, 3H), 1.59 (s, 3H). 13C NMR (100 MHz, Chloroform-\textit{d}) \(\delta \) 174.12, 163.82, 140.08, 138.98, 133.49, 133.48, 129.23, 129.12, 128.16, 127.52, 125.87, 124.72, 64.74, 45.37, 31.53, 27.60. HRMS (TOF) m/z [M + H]+ Calcd for C\textsubscript{18}H\textsubscript{17}NSO\textsubscript{4}+ 343.0951 found 343.0955.
Hz, 1H), 7.03 (t, J = 8.6 Hz, 2H), 4.47 (d, J = 14.7 Hz, 1H), 3.93 (d, J = 14.7 Hz, 1H), 3.43 (s, 3H),
1.59 (s, 3H). 13C NMR (100 MHz, Chloroform-d) Δ 174.34, 165.54 (d, J = 255 Hz) 163.73, 139.00,
136.26 (d, J = 3 Hz), 133.51, 130.47 (d, J = 10 Hz), 129.34, 128.24, 125.80, 124.78, 116.39 (d, J
= 23 Hz), 64.90, 45.43, 31.50, 27.61. 19F NMR (400 MHz, Chloroform-d) Δ -103.35 (s, 1F).
HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{18}$H$_{17}$NFSO$_4^+$ 362.0857 found 362.0881.

4-(((4-chlorophenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione ($3v$) white
solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl
acetate = 2 : 1) in 68% isolated yield, m. p. = 153.9-155.6$^\circ$C. 1H NMR (400 MHz, Chloroform-d)
Δ 8.29 (dd, J = 7.7, 1.6 Hz, 1H), 7.47 – 7.37 (m, 4H), 7.33 (d, J = 8.7 Hz, 2H), 7.18 – 7.13 (m, 1H),
4.46 (d, J = 14.7 Hz, 1H), 3.92 (d, J = 14.7 Hz, 1H), 3.42 (s, 3H), 1.59 (s, 3H). 13C NMR (100 MHz,
Chloroform-d) Δ 174.28, 163.70, 140.26, 138.94, 138.58, 133.54, 129.38, 129.35, 129.06,
128.24, 125.80, 124.78, 64.84, 45.42, 31.51, 27.61. HRMS (TOF) m/z [M + H]$^+$ Calcd for
C$_{18}$H$_{17}$NClSO$_4^+$ 378.0561 found 378.0521.

4-(((4-iodophenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione ($3w$) white
solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl
acetate = 2 : 1) in 69% isolated yield, m. p. = 183.1-186.8$^\circ$C. 1H NMR (400 MHz, Chloroform-d)
Δ 8.18 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 8.5 Hz, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.28 (td, J = 7.6, 1.3
Hz, 1H), 7.05 (dd, J = 8.5, 2.0 Hz, 3H), 4.35 (d, J = 14.7 Hz, 1H), 3.85 (d, J = 14.7 Hz, 1H), 3.33 (s,
3H), 1.50 (s, 3H). 13C NMR (100 MHz, Chloroform-d) Δ 174.25, 163.69, 139.66, 138.88, 138.34,
133.59, 129.27, 128.86, 128.18, 125.86, 124.74, 101.52, 64.78, 45.36, 31.46, 27.63. HRMS (TOF) m/z [M + H]^+ Calcd for C_{18}H_{17}NISO_4^+ 369.9917 found 369.9984.

2,4-dimethyl-4-(((4-nitrophenyl)sulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione (3x) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 58% isolated yield, m. p. = 189.2-190.5 °C. ^1H NMR (400 MHz, Chloroform-d) δ 8.24 (dd, J = 7.8, 1.4 Hz, 1H), 8.14 (d, J = 8.9 Hz, 2H), 7.63 (d, J = 8.9 Hz, 2H), 7.37 (td, J = 7.7, 1.1 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.09 (d, J = 7.9 Hz, 1H), 4.45 (d, J = 14.7 Hz, 1H), 3.91 (d, J = 14.7 Hz, 1H), 3.38 (s, 3H), 1.54 (s, 3H). ^13C NMR (100 MHz, Chloroform-d) δ 173.20, 162.55, 149.48, 144.75, 137.86, 132.53, 128.56, 128.03, 127.44, 124.56, 123.88, 123.19, 63.85, 44.55, 30.38, 26.66. HRMS (TOF) m/z [M + H]^+ Calcd for C_{18}H_{17}N_2SO_5^+ 389.0802 found 389.0871.

4-(((4-methoxyphenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3y) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 68% isolated yield, m. p. = 166.2-169.4 °C. ^1H NMR (400 MHz, Chloroform-d) δ 8.27 (dd, J = 6.2, 3.1 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.37 (d, J = 2.1 Hz, 1H), 7.35 (d, J = 2.1 Hz, 1H), 7.21 – 7.16 (m, 1H), 6.79 (d, J = 9.0 Hz, 2H), 4.43 (d, J = 14.6 Hz, 1H), 3.90 (d, J = 14.6 Hz, 1H), 3.82 (s, 3H), 3.39 (s, 3H), 1.58 (s, 3H). ^13C NMR (100 MHz, Chloroform-d) δ 174.39, 163.83, 163.51, 139.17, 133.46, 131.54, 129.78, 129.16, 128.05, 126.00, 124.71, 114.26, 64.91, 55.74, 45.39, 31.59, 27.54. HRMS (TOF) m/z [M + H]^+ Calcd for C_{19}H_{20}NSO_6^+ 374.1057 found 374.1061.
2,4-dimethyl-4-[(o-tolylsulfonyl)methyl]isoquinoline-1,3(2H,4H)-dione (3z) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 62% isolated yield, m. p. = 182.7-184.9 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.16 (dd, $J = 7.6, 1.5$ Hz, 1H), 7.32 – 7.22 (m, 3H), 7.14 (t, $J = 7.4$ Hz, 2H), 7.06 (d, $J = 8.3$ Hz, 1H), 6.95 (t, $J = 7.6$ Hz, 1H), 4.35 (d, $J = 14.6$ Hz, 1H), 3.84 (d, $J = 14.6$ Hz, 1H), 3.27 (s, 3H), 2.56 (s, 3H), 1.52 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 173.16, 162.74, 137.97, 136.85, 136.52, 132.50, 132.30, 131.44, 128.42, 128.07, 127.10, 125.44, 124.65, 123.63, 62.70, 44.10, 30.49, 26.46, 19.27. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{19}$H$_{20}$NSO$_4$ 358.1108 found 358.1121.

4-(((3-chlorophenyl)sulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3aa) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 66% isolated yield, m. p. = 173.4-174.6 °C. 1H NMR (400 MHz, Chloroform-d) δ 8.18 (dd, $J = 7.8, 1.2$ Hz, 1H), 7.28 (t, $J = 8.0$ Hz, 1H), 7.23 – 7.18 (m, 3H), 7.17 – 7.12 (m, 1H), 7.06 – 6.98 (m, 2H), 4.35 (d, $J = 14.7$ Hz, 1H), 3.87 (d, $J = 14.7$ Hz, 1H), 3.32 (s, 3H), 2.18 (s, 3H), 1.49 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 173.32, 162.77, 138.76, 138.22, 137.92, 133.26, 132.28, 127.97, 127.89, 127.02, 126.83, 124.92, 123.74, 123.56, 63.87, 44.23, 30.38, 26.50, 20.16. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{18}$H$_{17}$NCISO$_4$ 378.0561 found 378.0552.
2,4-dimethyl-4-((thiophen-2-ylsulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione (3ab) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 61% isolated yield, m. p. = 173.1-174.3°C. 1H NMR (400 MHz, Chloroform-d) δ 8.34 – 8.18 (m, 1H), 7.61 – 7.52 (m, 1H), 7.44 – 7.36 (m, 2H), 7.23 – 7.16 (m, 1H), 7.07 (d, J = 2.8 Hz, 1H), 6.93 – 6.83 (m, 1H), 4.54 (d, J = 14.7 Hz, 1H), 4.07 (d, J = 14.7 Hz, 1H), 3.41 (s, 3H), 1.61 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 174.23, 163.79, 141.17, 138.98, 134.34, 134.06, 133.55, 129.19, 128.14, 127.77, 125.75, 124.72, 66.17, 45.42, 31.44, 27.57. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{16}$H$_{16}$NS$_2$O$_4$ 350.0515 found 350.0531.

2,4-dimethyl-4-((methylsulfonyl)methyl)isoquinoline-1,3(2H,4H)-dione (3ac) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2 : 1) in 69% isolated yield, m. p. = 108.6-110.5°C. 1H NMR (400 MHz, Chloroform-d) δ 8.32 (dd, J = 7.9, 1.1 Hz, 1H), 7.69 (td, J = 7.7, 1.4 Hz, 1H), 7.54 – 7.47 (m, 2H), 4.31 (d, J = 14.7 Hz, 1H), 3.83 (d, J = 14.7 Hz, 1H), 3.42 (s, 3H), 2.60 (s, 3H), 1.65 (s, 3H). 13C NMR (100 MHz, Chloroform-d) δ 174.62, 163.73, 139.89, 134.00, 129.72, 128.39, 125.25, 124.83, 63.40, 45.60, 43.88, 31.29, 27.56. HRMS (TOF) m/z [M + H]$^+$ Calcd for C$_{13}$H$_{16}$NSO$_4$ 282.0795 found 282.0774.
4-((ethylsulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ad) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 70% isolated yield, m. p. = 141.1-142.5 °C. ¹H NMR (400 MHz, Chloroform-­d) δ 8.30 (dd, J = 8.1, 1.4 Hz, 1H), 7.72 – 7.63 (m, 1H), 7.54 – 7.44 (m, 2H), 4.26 (d, J = 14.5 Hz, 1H), 3.76 (d, J = 14.5 Hz, 1H), 3.42 (s, 3H), 2.70 (hept, J = 6.8 Hz, 2H), 1.63 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 174.75, 163.81, 140.04, 133.86, 129.59, 128.30, 125.30, 124.70, 60.46, 50.17, 45.42, 31.43, 27.55, 6.31. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₄H₁₈NSO₄⁺ 296.0951 found 296.0918.

4-((cyclopropylsulfonyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ae) white solid was obtained by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) in 68% isolated yield, m. p. = 126.5-128.4 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (dd, J = 7.8, 1.1 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.50 (td, J = 8.3, 1.7 Hz, 2H), 4.39 (d, J = 14.5 Hz, 1H), 3.84 (d, J = 14.5 Hz, 1H), 3.43 (s, 3H), 1.97 (tt, J = 8.0, 4.8 Hz, 1H), 1.65 (s, 3H), 1.04 (dt, J = 7.3, 3.5 Hz, 2H), 0.85 (dd, J = 8.0, 2.2 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 174.65, 163.80, 140.02, 133.72, 129.57, 128.32, 125.68, 124.75, 62.87, 45.41, 32.11, 31.38, 27.56, 5.34, 4.97. HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₅H₁₈NSO₄⁺ 308.0951 found 308.0921.
(2-tosylethen-1,1-diyl)dibenzene (5a) was detected by HRMS. HRMS (TOF) m/z [M + H]^+ Calcd for C_{21}H_{19}SO_2^+ 335.1100 found 335.1130.

8. References

9. 1H NMR, 13C NMR and 19F NMR spectra

1H NMR of compound 3a

13C NMR of compound 3a
$^1\text{H} \text{NMR of compound 3b}$

$^{13}\text{C} \text{NMR of compound 3b}$
1H NMR of compound 3c

13C NMR of compound 3c
1H NMR of compound 3d

13C NMR of compound 3d
S11

1H NMR of compound 3g

19F NMR of compound 3f
13C NMR of compound 3g

1H NMR of compound 3h
13C NMR of compound 3h

19F NMR of compound 3h
1H NMR of compound 3i

13C NMR of compound 3i
1H NMR of compound 3j

13C NMR of compound 3j
^{1}H NMR of compound 3k

^{13}C NMR of compound 3k
H NMR of compound 31

$\text{C NMR of compound 31}$

$\text{H NMR of compound 31}$

$\text{C NMR of compound 31}$
1H NMR of compound 3m

13C NMR of compound 3m
1H NMR of compound 3n

13C NMR of compound 3n
1H NMR of compound 3o

13C NMR of compound 3o
1H NMR of compound 3p

13C NMR of compound 3p
19F NMR of compound 3p

1H NMR of compound 3q
$\text{C NMR of compound 3q}$

$\text{H NMR of compound 3r}$
13C NMR of compound 3r

1H NMR of compound 3s
1H NMR of compound 3t
1H NMR of compound 3u

13C NMR of compound 3t

S46
13C NMR of compound 3u

19F NMR of compound 3u
1H NMR of compound 3v

13C NMR of compound 3v
1H NMR of compound 3w

13C NMR of compound 3w
\[\text{H NMR of compound 3x} \]

\[\text{C NMR of compound 3x} \]
\[S51 \]

H NMR of compound 3y

![NMR Spectrum](image)

\[^1\text{H} \text{NMR of compound 3y}\]

<table>
<thead>
<tr>
<th>ppm</th>
<th>8.26</th>
<th>8.26</th>
<th>7.41</th>
<th>7.26</th>
<th>7.39</th>
<th>7.37</th>
<th>7.35</th>
<th>7.34</th>
<th>7.29</th>
<th>7.19</th>
<th>7.18</th>
<th>7.18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.38</td>
<td>1.38</td>
<td>1.28</td>
</tr>
</tbody>
</table>

\[\text{S51} \]
\[^{13}C \text{ NMR of compound } 3y \]

\[^1H \text{ NMR of compound } 3z \]
13C NMR of compound 3z

1H NMR of compound 3aa
1H NMR of compound 3ab

13C NMR of compound 3ab
1H NMR of compound 3ac

13C NMR of compound 3ac
1H NMR of compound 3ad

13C NMR of compound 3ad