Supporting Information for

Synthesis of Pertrifluoromethyl Pyridazine Derivatives via Tandem

Reaction of Aryldiazonium Salts with Hexafluoroacetylacetone

Wei Wu,^a Xiaoyan Han,^{*b} and Zhiqiang Weng^{*a}

^aKey Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
^bTesting and Analysis Center, Soochow University, Suzhou 215123, China

Table of Contents

General information	S 2
General procedure of the synthesis of pertrifluoromethyl pyridazine derivatives	53
3	55
General procedure of the synthesis of 7	S 4
Procedure for gram scale reaction	S 5
Synthetic utility of pertrifluoromethyl pyridazinols.	S 6
Mechanism experiments	S 8
Unsuccessful reactions with other 1,3-diketone substrates	S 11
Data for compounds	S12
Crystal structure analyses	S47
References	S52
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra	S53

General information

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. The residual solvent peak was used as an internal reference: ¹H NMR (CDCl₃ δ 7.26; DMSO-*d*₆ δ 2.50) and ¹³C NMR (CDCl₃ δ 77.0; DMSO-*d*₆ δ 39.5). Coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS were obtained on State Key Discipline Testing Center for Physical Chemistry of Fuzhou University. The infrared (IR) spectra were recorded using a Nicolet iS50 at room temperature. Arenediazonium tetrafluoroborates were prepared according to the published procedures.¹ Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior to use. Column chromatography purifications were performed by flash chromatography using Merck silica gel 60.

General procedure of the synthesis of pertrifluoromethyl pyridazine derivatives 3

In a glove box filled with nitrogen, to an oven-dried 10 mL pressure tube equipped with a stir bar were added arenediazonium tetrafluoroborate **2** (0.30 mmol, 1.0 equiv), 1,1,1,5,5,5-hexafluoropentane-2,4-dione **1** (0.66 mmol, 2.2 equiv) and DMF (3.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 60 °C for 16 h. After cool to room temperature, the crude mixture was diluted with ethyl acetate (30 mL) and water (10 mL), and the products were extracted. The organic phase was washed with saturated brine(5 mL × 2) and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting pyridazine derivatives **3** were purified by column chromatography on silica gel with petroleum ether/ethyl acetate.

General procedure of the synthesis of 7

To an oven-dried 10 mL eggplant-shaped bottle equipped with a stir bar were added **3** (0.20 mmol, 1.0 equiv), **6** (0.60 mmol, 3.0 equiv), CH_2Cl_2 (1.5 mL) and concentrated H_2SO_4 (1.2 mmol, 6.0 equiv). The bottle was sealed with a glass cap, and the reaction mixture was stirred at room temperature for 10 h. The reaction was quenched by adding cold 5% NaHCO₃ solution, and the mixture was extracted with CH_2Cl_2 (10 mL × 3), washed with brine (5 mL × 3). The organic phase was collected and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate or petroleum ether/CH₂Cl₂.

Procedure for gram scale reaction for synthesis of 3c and 3t

In a glove box filled with nitrogen, to an oven-dried 100 mL pressure tube equipped with a stir bar were added **2c** (1.03, 5.0 mmol, 1.0 equiv) or **2t** (0.96 g, 3.6 mmol, 1.0 equiv), 1,1,1,5,5,5-hexafluoropentane-2,4-dione (2.29g, 11.0 mmol, 2.2 equiv or 1.65 g, 7.9 mmol, 2.2 equiv) and DMF (30 mL or 20 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 60 °C for 16 h. After cool to room temperature, the crude mixture was diluted with ethyl acetate (100 mL) and water (60 mL), and the products were extracted. The organic phase was washed with saturated brine(30 mL × 2) and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give 1.89 g of product **3c** (90% yield) and 1.64 g of product **3t** (92% yield), respectively.

Synthetic utility of pertrifluoromethyl pyridazinols

(1)

To an 10 mL eggplant-shaped bottle flask equipped with a stir bar were added **3c** (0.30 mmol, 1.0 equiv), KOH (3.0 mmol, 10.0 equiv) and H₂O (1.5 mL). The bottle was sealed with a glass cap, and the reaction mixture was stirred at room temperature for overnight. The reaction was acidified by adding 6 M HCl and the mixture was extracted with ethyl acetate (10 mL \times 3). The organic phase was collected, washed with brine (5 mL \times 3) and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) to give 46 mg of product **4** (42% yield).

To an oven-dried 5 mL pressure tube equipped with a stir bar were added **3t** (145 mg, 0.30 mmol, 1.0 equiv), 3-bromopropyne (78 μ L, 0.90 mmol, 3.0 equiv), K₂CO₃ (124 mg, 0.90 mmol, 3.0 equiv) and CH₃CN (3.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 80 °C for 1-2 h. After cool to room temperature, the crude mixture was diluted with ethyl acetate (20 mL) and water (10 mL), and the products were extracted. The organic phase was washed with saturated brine(5 mL × 2) and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (4:1) to give 60 mg of product **5** (38% yield).

Mechanism experiments

(a) Synthesis of intermediate I

In a glove box filled with nitrogen, to an oven-dried 25 mL pressure tube equipped with a stir bar were added 4-methylbenzenediazonium tetrafluoroborate **2c** (124 mg, 0.60 mmol, 1.0 equiv), 1,1,1,5,5,5-hexafluoropentane-2,4-dione **1** (125 mg, 0.60 mmol, 1.0 equiv) and DMF (6.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 60 °C for 12 h. After cool to room temperature, the crude mixture was diluted with ethyl acetate (20 mL) and water (10 mL), and the products were extracted. The organic phase was washed with saturated brine (5 mL × 2) and water (5 mL × 2). The organic phase was collected and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give 1,1,1,5,5,5-hexafluoro-3-(2-(*p*-*tolyl*)hydrazono)pentane-2,4-dione **I** in 85% yield (166 mg).

1,1,1,5,5,5-Hexafluoro-3-(2-(*p-tolyl*)hydrazono)pentane-2,4-dione (I)²

¹H NMR (400 MHz, CDCl₃) δ 14.58 (s, 1H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 2.44 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.1 (s, 3F), -75.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 176.5 (q, *J* = 40.1 Hz), 174.9 (q, *J* = 33.9 Hz), 140.0 (s), 137.7 (s), 130.8 (s), 123.9 (s), 117.9 (s), 116.9 (q, *J* = 292.0 Hz), 115.6 (q, *J* = 287.4 Hz), 21.1 (s).

(b) Reaction of intermediate I with 1

In a glove box filled with nitrogen, to an oven-dried 10 mL pressure tube equipped with added a stir bar were 1,1,1,5,5,5-hexafluoro-3-(2-(*p-tolyl*)hydrazono)pentane-2,4-dione I (98 mg, 0.30 mmol, 1.0 equiv), 1,1,1,5,5,5-hexafluoropentane-2,4-dione 1 (62 mg, 0.30 mmol, 1.0 equiv) and DMF (3.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 60 °C for 12 h. After cool to room temperature, the crude mixture was diluted with ethyl acetate (20 mL) and water (10 mL), and the products were extracted. The organic phase was washed with saturated brine (5 mL \times 2) and water (5 mL \times 2), and dried over Na₂SO₄, filtered, and the solvent was removed by rotary evaporation. The resulting residue was purified by column chromatography on silica gel with petroleum ether /ethyl acetate (6:1) to give 3c in 88% yield (111 mg).

(c) Reaction of 3c with bulky ortho-substituted phenol

To an oven-dried 10 mL eggplant-shaped bottle equipped with a stir bar were added **3c** (84 mg, 0.20 mmol, 1.0 equiv), 2-(*tert*-butyl)phenol (90 mg, 0.60 mmol, 3.0 equiv), CH_2Cl_2 (1.5 mL) and concentrated H_2SO_4 (1.2 mmol, 6.0 equiv). The bottle was sealed with a glass cap, and the reaction mixture was stirred at room temperature for 10 h. The reaction was quenched by adding cold 5% NaHCO₃ solution, and the mixture was extracted with CH_2Cl_2 (10 mL × 3), washed with brine (5 mL × 3). The organic phase was collected and dried over MgSO₄, filtered, and the solvent was removed by rotary evaporation. The resulting product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **8** in 78% yield (86 mg).

Unsuccessful reactions with other 1,3-diketone substrates

Data for compounds

2,2,2-Trifluoro-1-(6-hydroxy-1-phenyl-4,6-bis(trifluoromethyl)-1,6-dihydropyrid azin-3-yl)ethanone (3a)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3a** as a light yellow solid in 90% yield (110 mg). Mp: 112.0–112.6 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.50 – 7.43 (m, 3H), 6.53 (s, 1H), 4.93 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.8 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (q, *J* = 34.6 Hz), 142.3 (s), 129.3 (s), 129.1 (s), 126.8 (s), 124.1 (q, *J* = 35.7 Hz), 121.5 (q, *J* = 289.2 Hz), 120.7 (q, *J* = 6.8 Hz), 120.6 (q, *J* = 273.5 Hz), 116.4 (q, *J* = 291.0 Hz), 83.2 (q, *J* = 34.1 Hz). IR (ATR): v 3503, 3101, 2922, 1693, 1658, 1494, 1404, 1311, 1184, 1143, 1020, 977, 934, 881, 692, 673 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₆F₉N₂O₂ [M-H]⁻: 405.0280; found: 405.0280.

2,2,2-Trifluoro-1-(6-hydroxy-1-(*m*-tolyl)-4,6-bis(trifluoromethyl)-1,6-dihydropyri dazin-3-yl)ethanone (3b)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3b** as a white solid in 91% yield (115 mg). Mp: 93.0–94.2 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 3H), 7.31 – 7.26 (m,

1H), 6.52 (s, 1H), 4.58 (br s, 1H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.7 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (q, J = 34.6 Hz), 142.0 (s), 139.3 (s), 130.2 (s), 128.9 (s), 127.5 (s), 126.7 (s), 124.2 (q, J = 35.7 Hz), 124.0 (s), 121.5 (q, J = 289.2 Hz), 120.6 (q, J = 273.6 Hz), 120.4 (q, J = 6.6 Hz), 116.4 (q, J = 291.0 Hz), 83.1 (q, J = 34.2 Hz), 21.3 (s). IR (ATR): v 3377, 3109, 2931, 1700, 1505, 1403, 1310, 1246, 1198, 1171, 1138, 1076, 1045, 998, 950, 896, 876, 728, 706 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₈F₉N₂O₂ [M-H]⁻: 419.0437; found: 419.0419.

2,2,2-Trifluoro-1-(6-hydroxy-1-(p-tolyl)-4,6-bis(trifluoromethyl)-1,6-dihydropyri dazin-3-yl)ethanone (3c)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product 3c as a yellow solid in 93% yield (117 mg). Mp: 99.1-100.0 ℃. R_f (petroleum ether: ethyl acetate 6:1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 6.8 Hz, 2H), 6.54 (s, 1H), 4.65 (s, 1H), 2.44 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.8 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (q, J = 34.4 Hz), 139.6 (s), 129.8 (s), 126.9 (s), 126.7 (s), 124.4 (q, J = 36.6 Hz), 121.5 (q, J = 289.3 Hz), 120.7 (q, J = 273.5 Hz), 120.3 (q, J = 7.7 Hz), 116.4 (q, J = 291.4 Hz), 83.1 (q, J = 34.2 Hz), 21.2 (s). IR (ATR): v 3479, 3107, 2977, 2928, 1701, 1656, 1503, 1403, 1308, 1214, 1148, 1037, 1017, 981, 937, 885, 821 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₈F₉N₂O₂ [M-H]⁻: 419.0437; found: 419.0452.

1-(1-(4-(tert-Butyl)phenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyrida S13

zin-3-yl)-2,2,2-trifluoroethanone (3d)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3d** as a yellow solid in 93% yield (129 mg). Mp: 149.5–150.5 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 4H), 6.50 (s, 1H), 4.29 (s, 1H), 1.36 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.8 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (q, *J* = 34.6 Hz), 152.6 (s), 139.3 (s), 127.0 (s), 126.4 (s), 126.1 (s), 124.5 (q, *J* = 35.0 Hz), 121.6 (q, *J* = 289.7 Hz), 120.6 (q, *J* = 273.6 Hz), 120.2 (q, *J* = 6.1 Hz), 116.4 (q, *J* = 291.3 Hz), 83.2 (q, *J* = 33.9 Hz), 34.8 (s), 31.2 (s). IR (ATR): v 3468, 2974, 1727, 1703, 1501, 1411, 1307, 1276, 1216, 1196, 1155, 1140, 1067, 1045, 999, 944, 840 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₁₄F₉N₂O₂ [M-H]⁻: 461.0906; found: 461.0909.

1-(1-(2,6-Dimethylphenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyrida zin-3-yl)-2,2,2-trifluoroethanone (3e)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3e** as a white solid in 58% yield (76 mg). Mp: 131.0–131.8 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.75. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.6 Hz, 1H), 7.20 – 7.14 (m, 2H), 6.48 (s, 1H), 4.05 (s, 1H), 2.31 (s, 3H), 2.14 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F), -71.0 (s, 3F), -80.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (q, J = 34.8 Hz), 138.6 (s), 138.2 (s), 138.1 (s), 129.9 (s), 129.3 (s), 129.2 (q, J = 65.4 Hz), 128.8 (s), 124.6 (q, J = 35.8 Hz), 121.8 (q, J = 288.6 Hz), 120.8 (q, J = 273.7 Hz), 118.5 (q, J = 6.5 Hz), 116.4 (q, J = 291.0 Hz), 82.7 (q, J = 34.0 Hz), 19.2 (s), 17.4 (q, J = 3.1 Hz). IR (ATR): v 3103, 2815, 2676, 1730, 1527, 1463, 1403, 1354, 1312, 1258, 1216, 1153, 1115, 1021, 986, 937, 888, 843, 714, 628 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₀F₉N₂O₂ [M-H]⁻: 433.0593; found: 433.0595.

2,2,2-Trifluoro-1-(6-hydroxy-1-mesityl-4,6-bis(trifluoromethyl)-1,6-dihydropyrid azin-3-yl)ethanone (3f)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3f** as a off-white solid in 51% yield (69 mg). Mp: 135.5–136.2 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (s, 2H), 6.46 (s, 1H), 3.67 (s, 1H), 2.33 (s, 3H), 2.27 (s, 3H), 2.10 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F), -71.0 (s, 3F), -80.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (q, *J* = 34.7 Hz), 140.0 (s), 137.7 (s), 137.6 (s), 136.1 (s), 130.0 (s), 129.6 (s), 129.5 (s), 124.6 (q, *J* = 35.9 Hz), 121.8 (q, *J* = 288.7 Hz), 120.8 (q, *J* = 273.6 Hz), 118.3 (q, *J* = 6.3 Hz), 116.4 (q, *J* = 290.8 Hz), 82.7 (q, *J* = 34.1 Hz), 21.0 (s), 19.0 (s), 17.3 (q, *J* = 3.0 Hz). IR (ATR): v 3459, 3124, 2931, 1977, 1707, 1480, 1400, 1262, 1213, 1180, 1151, 1052, 1031, 997, 957, 932, 851, 743 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₇H₁₂F₉N₂O₂ [M-H]⁻: 447.0750; found: 447.0752.

2,2,2-Trifluoro-1-(6-hydroxy-1-(2-methoxyphenyl)-4,6-bis(trifluoromethyl)-1,6-di hydropyridazin-3-yl)ethanone (3g)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3g** as a yellow solid in 76% yield (99 mg). Mp: 81.5–82.1 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.67. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, J = 7.9 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.19 – 7.07 (m, 2H), 6.59 (s, 1H), 5.71 (s, 1H), 3.95 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 (s, 3F), -71.0 (s, 3F), -79.2 (s, 3F). ¹³C NMR (101 MHz, S15)

CDCl₃) δ 174.1 (q, *J* = 34.7 Hz), 153.8 (s), 131.6 (s), 131.5 (s), 130.5 (s), 129.0 (s), 123.6 (q, *J* = 35.9 Hz), 122.4 (s), 122.1 (q, *J* = 6.5 Hz), 121.7 (q, *J* = 288.7 Hz), 120.9 (q, *J* = 273.4 Hz), 116.3 (q, *J* = 291.2 Hz), 112.6 (s), 82.7 (q, *J* = 33.5 Hz), 56.8 (s). IR (ATR): v 3470, 3123, 2948, 2846, 1708, 1501, 1414, 1394, 1299, 1209, 1192, 1149, 1135, 1061, 1028, 982, 943, 877 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₈F₉N₂O₃ [M-H]⁻: 435.0386; found: 435.0390.

2,2,2-Trifluoro-1-(6-hydroxy-1-(4-methoxyphenyl)-4,6-bis(trifluoromethyl)-1,6-di hydropyridazin-3-yl)ethan-1-one (3h)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3h** as a yellow solid in 95% yield (124 mg). Mp: 99.0–100.7 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.87. ¹H NMR (400 MHz, DMSO- d_6) δ 9.69 (s, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.3 Hz, 2H), 6.72 (s, 1H), 3.81 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -62.3 (s, 3F), -69.7 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.0 (q, J = 33.1 Hz), 159.5 (s), 135.4 (s), 128.2 (s), 125.9 (s), 122.4 (q, J = 6.5 Hz), 122.0 (q, J = 35.4 Hz), 121.9 (q, J = 289.5 Hz), 121.0 (q, J = 273.2 Hz), 116.5 (q, J = 291.5 Hz), 114.1 (s), 83.0 (q, J = 33.1 Hz), 55.4 (s). IR (ATR): v 3485, 3130, 2973, 1714, 1607, 1503, 1414, 1299, 1192, 1148, 1131, 987, 945, 874, 838, 738, 669, 581 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₈F₉N₂O₃ [M-H]⁻: 435.0386; found: 435.0385.

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3i** as a brownish yellow solid in 93% yield (130 mg). Mp: 126.6–127.5 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.29. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 7.7 Hz, 1H), 7.12 (s, 1H), 6.91 (d, J = 7.7 Hz, 1H), 6.51 (s, 1H), 5.23 (br s, 1H), 3.92 (s, 3H), 3.87 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (s, 3F), -70.7 (s, 3F), -77.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (q, J = 68.5, 34.3 Hz), 149.4 (s), 148.7 (s), 135.6 (s), 126.6 (s), 124.0 (q, J = 35.5 Hz), 121.6 (q, J = 290.1 Hz), 120.6 (q, J = 273.6 Hz), 120.5 (q, J = 6.8 Hz), 119.1 (s), 116.5 (q, J = 291.0 Hz), 110.7 (s), 110.3 (s), 83.4 (q, J = 34.1 Hz), 56.1 (s), 56.0 (s). IR (ATR): v 3378, 2952, 2922, 2849, 1722, 1603, 1510, 1467, 1402, 1306, 1253, 1214, 1188, 1149, 1133, 1084, 1054, 1019, 991, 948, 899, 849, 771 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₁₀F₉N₂O₄ [M-H]: 465.0491; found: 465.0468.

2,2,2-Trifluoro-1-(6-hydroxy-1-(4-(trifluoromethoxy)phenyl)-4,6-bis(trifluoromet hyl)-1,6-dihydropyridazin-3-yl)ethanone (3j)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3j** as a yellow oily liquid in 45% yield (66 mg). Mp: 92.6–93.5 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.9 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 6.55 (s, 1H), 5.37 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.0 (s, 3F), -63.6 (s, 3F), -70.8 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.5 (q, J = 34.7 Hz), 149.4 (s), 140.6 (s), 128.2 (s), 127.2 (s), 124.1 (q, J = 36.1 Hz), 121.5 (q, J = 289.0 Hz), 121.3 (s), 121.2 (q, J = 9.1 Hz), 120.5 (q, J = 273.5 Hz), 120.4 (q, J = 258.4 Hz), 116.4 (q, J = 290.9 Hz), 83.2 (q, J = 34.1 Hz). IR (ATR): v 3432, 3104, 1713, 1504, 1406, 1259, 1210, 1148, 1105, 1034, 1016, 979, 939, 852, 747, 672 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₅F₁₂N₂O₃ [M-H]⁻: 489.0103; found:

489.0102.

2,2,2-Trifluoro-1-(6-hydroxy-4,6-bis(trifluoromethyl)-1-(4-(trifluoromethyl)phen yl)-1,6-dihydropyridazin-3-yl)ethanone (3k)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3k** as a white solid in 86% yield (122 mg). Mp: 85.6–87.1 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.61. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 6.57 (s, 1H), 5.41 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F), -63.5 (s, 3F), -70.9 (s), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (q, J = 34.8 Hz), 145.3 (s), 131.0 (q, J = 33.1 Hz), 127.5 (s), 126.8 (q, J = 3.7 Hz), 126.6 (s), 126.3 (q, J = 3.6 Hz), 124.1 (q, J = 35.8 Hz), 123.6 (q, J = 272.3 Hz), 121.7 (q, J = 7.2 Hz), 121.5 (q, J = 289.1 Hz), 120.5 (q, J = 273.6 Hz), 116.3 (q, J = 291.0 Hz), 83.4 (q, J = 34.4 Hz). IR (ATR): v 3502, 3109, 2924, 1721, 1616, 1520, 1412, 1372, 1321, 1214, 1183, 1160, 1140, 1114, 1065, 1034, 1013, 967, 943, 890, 842, 681, 623 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₅F₁₂N₂O₂ [M-H]⁻: 473.0154; found: 473.0160.

1-(1-(4-Acetylphenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3 -yl)-2,2,2-trifluoroethanone (3l)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **31** as a white solid in 86% yield (116 mg). Mp: 136.5–137.6 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.28. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 2H), 7.73

(d, J = 8.3 Hz, 2H), 6.59 (s, 1H), 5.62 (br s, 1H), 2.62 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (s, 3F), -70.9 (s, 3F), -77.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 198.7 (s), 173.9 (q, J = 35.0 Hz), 146.7 (s), 136.2 (s), 129.2 (s), 127.7 (s), 126.1 (s), 124.0 (q, J = 36.1 Hz), 122.1 (q, J = 6.8 Hz), 121.6 (q, J = 289.5 Hz), 120.5 (q, J = 273.6 Hz), 116.3 (q, J = 291.3 Hz), 83.5 (q, J = 34.6 Hz), 26.7 (s). IR (ATR): v 3141, 2922, 1729, 1657, 1602, 1525, 1403, 1282, 1219, 1172, 1154, 1086, 1035, 1013, 979, 937, 844, 594 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₆H₈F₉N₂O₃ [M-H]⁻: 447.0386; found: 447.0387.

2,2,2-Trifluoro-1-(6-hydroxy-1-(4-nitrophenyl)-4,6-bis(trifluoromethyl)-1,6-dihyd ropyridazin-3-yl)ethanone (3m)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3m** as a brown liquid in 76% yield (103 mg). Mp: 117.0–118.2 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.41. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.2 Hz, 2H), 7.88 (d, J = 8.2 Hz, 2H), 6.61 (s, 1H), 6.36 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.9 (s, 3F), -78.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (q, J = 35.1 Hz), 148.0 (s), 146.7 (s), 128.0 (s), 126.4 (s), 124.5 (s), 123.9 (q, J = 36.2 Hz), 122.8 (q, J = 6.1 Hz), 121.6 (q, J = 289.5 Hz), 120.4 (q, J = 273.6 Hz), 116.3 (q, J = 291.1 Hz), 83.6 (q, J = 34.6 Hz). IR (ATR): v 3404, 3099, 2931, 1730, 1595, 1524, 1492, 1402, 1343, 1312, 1213, 1150, 1107, 1029, 1014, 936, 856, 749, 692 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₃F₉N₃O₄ [M-H]⁻: 450.0131; found: 450.0111.

2,2,2-Trifluoro-1-(1-(3-fluorophenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihy dropyridazin-3-yl)ethanone (3n)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3n** as a white solid in 88% yield (112 mg). Mp: 97.0–98.6 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.71. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.33 (m, 3H), 7.17 (t, J = 8.1 Hz, 1H), 6.55 (s, 1H), 4.77 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.8 (s, 3F), -78.0 (s, 3F), -110.6 (dd, J = 14.7, 8.6 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (q, J = 34.9 Hz), 162.3 (d, J = 248.2 Hz), 143.4 (d, J = 9.8 Hz), 130.3 (d, J = 8.9 Hz), 127.1 (s), 124.1 (q, J = 36.0 Hz), 122.3 (d, J = 2.9 Hz), 121.5 (q, J = 289.3 Hz), 121.3 (q, J = 6.4 Hz), 120.5 (q, J = 273.6 Hz), 116.4 (q, J = 290.9 Hz), 116.3 (d, J = 21.1 Hz), 114.3 (d, J = 25.2 Hz), 83.3 (q, J = 34.4 Hz). IR (ATR): v 3388, 3108, 2920, 2851, 1701, 1602, 1511, 1492, 1397, 1312, 1244, 1183, 1152, 1136, 1077, 1041, 991, 954, 884, 705 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅F₁₀N₂O₂ [M-H]⁻: 423.0186; found: 423.0188.

2,2,2-Trifluoro-1-(1-(4-fluorophenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihy dropyridazin-3-yl)ethanone (30)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **30** as a yellow solid in 79% yield (100 mg). Mp: 119.2–120.8 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.57. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 7.4, 4.9 Hz, 2H), 7.15 (t, J = 8.0 Hz, 2H), 6.55 (s, 1H), 4.40 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.8 (s, 3F), -77.8 (s, 3F), -110.8 – -110.9 (m). ¹³C NMR (101 MHz, CDCl₃) δ 174.2 (q, J = 34.8 Hz), 162.7 (d, J = 250.5 Hz), 138.2 (d, J = 3.3 Hz), 128.9 (d, J = 8.9 Hz), 127.1 (s), 124.4 (q, J = 36.6 Hz), 121.4 (q, J = 289.0 Hz), 120.6 (q, J = 6.2 Hz), 120.5 (q, J = 273.7 Hz), 116.3 (q, J = 291.0 Hz), 116.2 (d, J = 23.1 Hz),

83.1 (q, J = 34.2 Hz). IR (ATR): v 3486, 3099, 1704, 1501, 1403, 1315, 1211, 1145, 1102, 1031, 1013, 978, 933, 840 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅F₁₀N₂O₂ [M-H]⁻: 423.0186; found: 423.0190.

1-(1-(3-Chlorophenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3-yl)-2,2,2-trifluoroethanone (3p)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3p** as a yellow solid in 82% yield (108 mg). Mp: 82.3–83.8 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.52. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.53 – 7.35 (m, 3H), 6.55 (s, 1H), 4.97 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.8 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.3 (q, *J* = 28.7 Hz), 143.2 (s), 134.6 (s), 130.1 (s), 129.4 (s), 127.3 (s), 126.9 (s), 124.9 (s), 124.1 (q, *J* = 31.5 Hz), 121.4 (q, *J* = 289.2 Hz), 121.3 (q, *J* = 6.9 Hz), 120.5 (q, *J* = 273.7 Hz), 116.3 (q, *J* = 290.9 Hz), 83.2 (q, *J* = 34.2 Hz). IR (ATR): v 3387, 3100, 1728, 1703, 1590, 1510, 1477, 1402, 1351, 1306, 1215, 1182, 1146, 1074, 1040, 988, 948, 885, 867, 780, 702 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅ClF₉N₂O₂ [M-H]⁻: 438.9890; found: 438.9895.

1-(1-(4-Chlorophenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3-yl)-2,2,2-trifluoroethanone (3q)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product 3q as a light yellow solid in 92% yield (121 mg). Mp: 101.0–101.6 °C. R_f (petroleum

ether: ethyl acetate 6:1) = 0.59. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 6.55 (s, 1H), 4.83 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.8 (s, 3F), -77.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (q, *J* = 34.8 Hz), 140.8 (s), 135.3 (s), 129.4 (s), 127.9 (s), 127.1 (s), 124.2 (q, *J* = 35.7 Hz), 121.4 (q, *J* = 289.4 Hz), 120.9 (q, *J* = 6.7 Hz), 120.5 (q, *J* = 273.8 Hz), 116.3 (q, *J* = 290.9 Hz), 83.2 (q, *J* = 34.2 Hz). IR (ATR): v 3471, 3106, 2977, 2927, 1708, 1510, 1489, 1402, 1314, 1214, 1190, 1147, 1089, 1034, 1012, 982, 936, 888, 831 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅ClF₉N₂O₂ [M-H]⁻: 438.9890; found: 438.9892.

1-(1-(3-Bromophenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3-yl)-2,2,2-trifluoroethanone (3r)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3r** as a white solid in 86% yield (111 mg). Mp: 93.8–94.7 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 6.55 (s, 1H), 5.25 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.8 (s, 3F), -78.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.4 (q, J = 34.9 Hz), 143.4 (s), 132.3 (s), 130.4 (s), 129.7 (s), 127.2 (s), 125.3 (s), 124.1 (q, J = 36.0 Hz), 116.3 (q, J = 290.8 Hz), 83.2 (q, J = 34.2 Hz). IR (ATR): v 3424, 3101, 1713, 1581, 1514, 1475, 1403, 1309, 1214, 1148, 1102, 1035, 982, 942, 885, 774, 746, 693 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅BrF₉N₂O₂ [M-H]⁻: 482.9385; found: 482.9389.

1-(1-(3-Bromo-4-methylphenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydrop yridazin-3-yl)-2,2,2-trifluoroethanone (3s)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3s** as a yellow solid in 88% yield (131 mg). Mp: 100.5–101.1 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.56. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 6.53 (s, 1H), 4.81 (br s, 1H), 2.46 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.8 (s, 3F), -77.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.0 (q, J = 34.9 Hz), 140.8 (s), 139.4 (s), 131.0 (s), 130.4 (s), 127.3 (s), 125.5 (s), 124.5 (s), 124.3 (q, J = 36.1 Hz), 121.5 (q, J = 289.3 Hz). 121.0 (q, J = 6.3 Hz), 120.6 (q, J = 273.6 Hz), 116.3 (q, J = 291.4 Hz), 83.1 (q, J = 34.2 Hz), 22.7 (s). IR (ATR): v 3362, 3105, 2963, 1703, 1512, 1487, 1405, 1314, 1230, 1183, 1150, 1109, 1091, 1035, 977, 943, 892 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₅H₇BrF₉N₂O₂ [M-H]⁻: 496.9542; found: 496.9546.

1-(1-(4-Bromophenyl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3-yl)-2,2,2-trifluoroethanone (3t)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3t** as a yellow solid in 94% yield (136 mg). Mp: 98.2–100.1 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 2H), 7.46 (d, J = 7.2 Hz, 2H), 6.55 (s, 1H), 4.49 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.9 (s, 3F), -77.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.2 (q, J = 34.9

Hz), 141.3 (s), 132.4 (s), 128.2 (s), 127.3 (s), 124.3 (q, J = 35.9 Hz), 123.4 (s), 121.4 (q, J = 289.3 Hz), 120.9 (q, J = 6.7 Hz), 120.5 (q, J = 273.7 Hz), 116.3 (q, J = 291.2 Hz), 83.2 (q, J = 34.4 Hz). IR (ATR): v 3370, 3104, 1712, 1578, 1512, 1486, 1405, 1356, 1312, 1218, 1199, 1146, 1070, 1036, 1010, 941, 832, 693 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅BrF₉N₂O₂ [M-H]⁻: 482.9385; found: 482.9387.

2,2,2-Trifluoro-1-(6-hydroxy-1-(4-iodophenyl)-4,6-bis(trifluoromethyl)-1,6-dihyd ropyridazin-3-yl)ethanone (3u)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3u** as a yellow solid in 87% yield (139 mg). Mp: 99.0–99.6 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.66. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 6.54 (s, 1H), 4.51 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.8 (s, 3F), -77.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.3 (q, J = 35.4 Hz), 142.1 (s), 138.4 (s), 128.3 (s), 127.3 (s), 124.4 (q, J = 36.2 Hz), 121.4 (q, J = 289.8 Hz), 120.9 (q, J = 6.4 Hz), 120.5 (q, J = 273.4 Hz), 116.3 (q, J = 291.0 Hz), 95.0 (s), 83.2 (q, J = 34.5 Hz). IR (ATR): v 3364, 3103, 1711, 1513, 1484, 1405, 1357, 1312, 1172, 1142, 1035, 1005, 980, 939, 887, 828, 622 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₅F₉IN₂O₂ [M-H]⁻: 530.9247; found: 530.9247.

1-(1-([1,1'-Biphenyl]-4-yl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyrida zin-3-yl)-2,2,2-trifluoroethanone (3v)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product 3v

as a yellow solid in 92% yield (133 mg). Mp: 117.9–119.0 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.58. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.61 (m, 6H), 7.48 (t, J= 7.4 Hz, 2H), 7.44 – 7.38 (m, 1H), 6.56 (s, 1H), 4.97 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.7 (s, 3F), -77.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.3 (q, J = 34.6 Hz), 142.9 (s), 142.0 (s), 141.4 (s), 139.6 (s), 129.1 (s), 129.0 (s), 128.9 (s), 128.1 (s), 128.0 (s), 127.7 (s), 127.2 (s), 126.9 (s), 126.3 (s), 124.2 (q, J = 35.9 Hz), 121.6 (q, J = 289.7 Hz), 120.8 (q, J = 5.9 Hz), 120.7 (q, J = 273.5 Hz), 116.5 (q, J = 291.0 Hz), 83.3 (q, J = 33.9 Hz). IR (ATR): v 3446, 3090, 1727, 1527, 1486, 1406, 1302, 1195, 1139, 1084, 1034, 1017, 969, 939, 884, 842, 766, 700 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₀H₁₀F₉N₂O₂ [M-H]⁻: 481.0593; found: 481.0597.

2,2,2-Trifluoro-1-(6-hydroxy-1-(naphthalen-1-yl)-4,6-bis(trifluoromethyl)-1,6-dih ydropyridazin-3-yl)ethanone (3w)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3w** as a yellow solid in 83% yield (114 mg). Mp: 150.0–151.2 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.47. ¹H NMR (400 MHz, DMSO- d_6) δ 9.78 (s, 1H), 8.11 (d, J = 7.9 Hz, 1H), 8.04 (d, J = 7.2 Hz, 1H), 7.92 (d, J = 6.6 Hz, 1H), 7.75 (d, J = 6.9 Hz, 1H), 7.66 – 7.52 (m, 3H), 6.93 (s, 1H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -62.1 (s, 3F), -69.7 (s, 3F), -76.9 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.2 (q, J = 33.5 Hz), 137.4 (s), 134.0 (s), 130.0 (s), 129.5 (s), 128.3 (s), 127.2 (s), 126.5 (s), 124.9 (s), 122.5 (q, J = 5.8 Hz), 122.4 (s), 122.3 (q, J = 35.2 Hz), 121.7 (q, J = 288.8 Hz), 121.1 (q, J = 273.5 Hz), 116.2 (q, J = 291.5 Hz), 82.5 (q, J = 32.2 Hz). IR (ATR): v 3471, 3128, 2961, 1710, 1497, 1393, 1301, 1248, 1195, 1153, 1134, 1055, 1008, 975, 935, 770 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₈F₉N₂O₂ [M-H]⁻: 455.0437; found: 455.0441.

2,2,2-Trifluoro-1-(6-hydroxy-1-(naphthalen-2-yl)-4,6-bis(trifluoromethyl)-1,6-dih ydropyridazin-3-yl)ethanone (3x)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3x** as a yellow solid in 66% yield (90 mg). Mp: 95.8–96.7 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.96 – 7.86 (m, 3H), 7.65 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 4.6 Hz, 2H), 6.59 (s, 1H), 5.21 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.7 (s, 3F), -77.9 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.3 (q, J = 34.4 Hz), 139.6 (s), 133.0 (s), 132.8 (s), 129.3 (s), 128.6 (s), 127.8 (s), 127.4 (s), 127.1 (s), 125.7 (s), 124.4 (s), 124.2 (q, J = 35.4 Hz), 121.7 (q, J = 289.1 Hz), 120.8 (q, J = 6.3 Hz), 120.7 (q, J = 273.6 Hz), 116.5 (q, J = 291.0 Hz), 83.4 (q, J = 34.2 Hz). IR (ATR): v 3463, 3393, 3109, 3069, 1707, 1505, 1408, 1303, 1244, 1198, 1170, 1139, 1069, 1034, 985, 959, 936, 890, 860, 808, 746, 724, 632, 474 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₈H₈F₉N₂O₂ [M-H]⁻: 455.0437; found: 455.0440.

1-(1-(9*H*-Fluoren-2-yl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3-yl)-2,2,2-trifluoroethan-1-one (3y)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3y** as a yellow solid in 85% yield (126 mg). Mp: 201.4–202.3 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.59. ¹H NMR (400 MHz, DMSO- d_6) δ 9.84 (s, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.79 (s, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.57 (d, J

= 7.2 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 6.82 (s, 1H), 4.01 (s, 2H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -62.0 (s, 3F), -69.5 (s, 3F), -77.8 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.9 (q, J = 33.1 Hz), 143.6 (s), 143.5 (s), 141.7 (s), 141.1 (s), 139.8 (s), 127.5 (s), 127.0 (s), 126.1 (s), 125.6 (s), 125.2 (s), 123.5 (s), 122.8 (q, J = 6.5 Hz), 121.9 (q, J = 289.5 Hz), 121.8 (q, J = 35.2 Hz), 120.9 (q, J = 273.6 Hz), 120.6 (s), 120.2 (s), 116.4 (q, J = 291.7 Hz), 83.2 (q, J = 33.1 Hz), 36.5 (s). IR (ATR): v 3373, 3110, 2963, 1726, 1700, 1505, 1401, 1309, 1250, 1200, 1171, 1152, 1134, 1078, 1038, 990, 951, 900, 738, 672 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₁H₁₀F₉N₂O₂ [M-H]⁻: 493.0593; found: 493.0594.

1-(1-(6-Chloropyridin-3-yl)-6-hydroxy-4,6-bis(trifluoromethyl)-1,6-dihydropyrid azin-3-yl)-2,2,2-trifluoroethan-1-one (3z)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3z** as a white solid in 43% yield (57 mg). Mp: 163.0–164.5 °C. $R_{\rm f}$ (petroleum ether: ethyl acetate 6:1) = 0.41. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 6.61 (s, 1H), 5.55 (br s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (s, 3F), -71.0 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.0 (q, J = 33.4 Hz), 149.8 (s), 146.9 (s), 138.6 (s), 137.2 (s), 127.6 (s), 124.8 (s), 124.2 (q, J = 7.1 Hz), 121.9 (q, J = 34.9 Hz), 121.8 (q, J = 290.2 Hz), 120.7 (q, J = 273.4 Hz), 116.2 (q, J = 291.8 Hz), 83.0 (q, J = 33.4 Hz). IR (ATR): v 3102, 2959, 2919, 2849, 2676, 1730, 1526, 1462, 1402, 1354, 1312, 1258, 1216, 1154, 1114, 1020, 985, 936, 740 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₃H₄ClF₉N₃O₂ [M-H]⁻: 439.9843; found: 439.9845.

2,2,2-Trifluoro-1-(6-hydroxy-1-(6-methoxypyridin-3-yl)-4,6-bis(trifluoromethyl)-1,6-dihydropyridazin-3-yl)ethanone (3aa)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 6:1) gave final product **3aa** as a light yellow solid in 82% yield (108 mg). Mp: 123.5–124.3 °C. R_f (petroleum ether: ethyl acetate 6:1) = 0.39. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.82 (dd, J = 8.9, 2.3 Hz, 1H), 6.83 (d, J = 8.9 Hz, 1H), 6.56 (s, 2H), 3.95 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -70.8 (s, 3F), -78.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 174.0 (q, J = 34.7 Hz), 163.7 (s), 144.7 (s), 137.7 (s), 133.6 (s), 127.5 (s), 124.0 (q, J = 35.4 Hz), 121.5 (q, J = 289.1 Hz), 121.3 (q, J = 5.8 Hz), 120.5 (q, J = 273.6 Hz), 116.3 (q, J = 291.0 Hz), 110.2 (s), 83.0 (q, J = 33.9 Hz), 54.5 (s). IR (ATR): v 3101, 2953, 2852, 2751, 2630, 1722, 1621, 1523, 1496, 1386, 1297, 1211, 1154, 1017, 978, 935, 880, 841, 746 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₇F₉N₃O₃ [M-H]⁻: 436.0338; found: 436.0352.

2,2,2-Trifluoro-1-(6-hydroxy-1-(quinolin-6-yl)-4,6-bis(trifluoromethyl)-1,6-dihyd ropyridazin-3-yl)ethan-1-one (3ab)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 2:1) gave final product **3ab** as a white solid in 63% yield (86 mg). Mp: 219.7–220.5 °C. R_f (petroleum ether: ethyl acetate 2:1) = 0.68. ¹H NMR (400 MHz, DMSO- d_6) δ 10.01 (br s, 1H), 9.00 (s, 1H), 8.52 (d, J = 8.2 Hz, 1H), 8.26 (s, 1H), 8.17 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 8.9 Hz, 1H), 7.63 (dd, J = 7.7, 3.8 Hz, 1H), 6.90 (s, 1H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ

-61.9 (s, 3F), -69.6 (s, 3F), -77.8 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 173.0 (q, J = 33.6 Hz), 151.9 (s), 146.8 (s), 140.1 (s), 136.7 (s), 130.1 (s), 127.9 (s), 127.3 (s), 126.7 (s), 125.5 (s), 123.5 (q, J = 6.7 Hz), 122.5 (s), 121.9 (q, J = 290.0 Hz), 121.8 (q, J = 35.0 Hz), 120.8 (q, J = 273.0 Hz), 116.3 (q, J = 291.9 Hz), 83.3 (q, J = 33.5 Hz). IR (ATR): v 3387, 1713, 1670, 1585, 1508, 1379, 1327, 1270, 1162, 1130, 1061, 1037, 990, 926, 799, 704, 671, 635 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₇H₇F₉N₃O₂ [M-H]⁻: 456.0389; found: 456.0391.

6-Hydroxy-1-(*p*-tolyl)-4,6-bis(trifluoromethyl)-1,6-dihydropyridazine-3-carboxylic acid (4)

Following the procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 1:2) gave final product **4** as a white solid in 42% yield (46 mg). Mp: 105.9–107.5 °C. R_f (petroleum ether: ethyl acetate 1:2) = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.7 Hz, 2H), 7.32 – 7.21 (m, 3H), 6.59 (s, 1H), 2.42 (s, 3H), COOH was not observed. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (s, 3F), -76.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (s), 139.8 (s), 139.5 (s), 130.0 (s), 129.7 (s), 128.1 (s), 123.8 (q, J = 34.2 Hz), 121.5 (q, J = 287.7 Hz), 121.1 (q, J = 7.9 Hz), 120.8 (q, J = 273.3 Hz), 83.2 (q, J = 33.0 Hz), δ 21.2 (s). IR (ATR): v 3218, 2926, 2858, 1729, 1510, 1407, 1357, 1260, 1187, 1047, 985 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₄H₉F₆N₂O₃ [M-H]⁻: 367.0512; found: 367.0523.

1-(1-(4-Bromophenyl)-6-(prop-2-yn-1-yloxy)-4,6-bis(trifluoromethyl)-1,6-dihydro pyridazin-3-yl)-2,2,2-trifluoroethan-1-one (5)

Following the procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 4:1) gave final product **5** as a brown solid in 38% yield (60 mg). Mp: 97.8–99.5 °C. $R_{\rm f}$ (petroleum ether: ethyl acetate 4:1) = 0.47. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 6.57 (s, 1H), 4.32 (dd, J = 27.6, 16.0 Hz, 2H), 2.51 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 (s, 3F), -70.9 (s, 3F), -75.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 173.7 (q, J = 34.9 Hz), 141.8 (s), 132.3 (s), 127.3 (s), 127.2 (q, J = 8.0 Hz), 123.2 (s), 120.9 (q, J =

289.2 Hz), 120.3 (q, J = 274.0 Hz), 119.6 (q, J = 8.0 Hz), 119.3 (q, J = 44.1 Hz), 116.3 (q, J = 291.2 Hz), 87.7 (q, J = 33.6 Hz), 77.3 (s), 76.2 (s), 53.0 (s). IR (ATR): v 3305, 2930, 1732, 1519, 1488, 1405, 1275, 1215, 1166, 1052, 1013, 939, 829 cm⁻¹. HRMS (ESI) m/z: calcd. for C₁₇H₇BrF₉N₂O₂ [M-H]⁻: 520.9542; found: 520.9543.

5-Methyl-2-(8-methyl-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*chromeno[3,4-*c*]pyridazin-5-yl)phenol (7a)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7a** as a white solid in 91% yield (109 mg). Mp: 182.1–183.0 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.69. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.50 – 7.22 (m, 6H), 7.11 (d, J = 7.6 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 6.81 (s, 1H), 6.70 (d, J = 6.1 Hz, 1H), 5.75 (s, 1H), 2.46 (s, 3H), 2.41 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4 (s, 3F), -73.7 (s, 3F), -77.1 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 155.9 (s), 150.7 (s), 142.5 (s), 141.7 (s), 138.7 (s), 138.5 (s), 133.7 (q, J = 34.5 Hz), 129.7 (s), 129.6 (s), 129.3 (s), 126.3 (s), 126.0 (s), 125.6 (s), 124.4 (q, J = 289.5 Hz), 123.7 (q, J = 286.8 Hz), 120.9 (s), 119.9 (q, J = 274.9 Hz), 119.6 (s), 119.5 (s), 117.8 (s), 114.4 (s), 94.5 (q, J = 4.6 Hz), 84.8 (q, J = 30.8 Hz), 43.7 (q, J = 31.2 Hz), 21.2 (s), 21.0 (s), 20.7 (s). IR (ATR): v 3539, 2925, 1625, 1570, 1511, 1294, 1263, 1170, 1152, 1116, 1033, 992, 811, 703 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₉H₂₀F₉N₂O₂ [M-H]⁻: 599.1376; found: 599.1383.

4-Methyl-2-(9-methyl-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*chromeno[3,4-*c*]pyridazin-5-yl)phenol (7b)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7b** as a white solid in 93% yield (112 mg). Mp: 221.9–222.7 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.69. ¹H NMR (400 MHz, DMSO- d_6) δ 9.54 (s, 1H), 7.72 (s, 1H), 7.25 (s, 4H), 7.16 – 7.04 (m, 3H), 6.94 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.17 (s, 1H), 2.31 (s, 3H), 2.27 (s, 3H), 2.13 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.1 (s, 3F), -70.7 (s, 3F), -75.2 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.3 (s), 149.8 (s), 139.3 (s), 137.7 (s), 133.4 (s), 131.8 (q, J = 33.1 Hz), 131.7 (s), 131.0 (s), 130.3 (s), 129.9 (s), 129.6 (s), 127.5 (s), 127.0 (s), 125.4 (s), 124.6 (q, J = 289.8 Hz), 123.8 (q, J = 286.8 Hz), 121.2 (s), 120.3 (q, J = 274.9 Hz), 119.3 (s), 119.2 (s), 117.6 (s), 96.3 (q, J = 4.4 Hz), 82.5 (q, J = 29.4 Hz), 44.6 (q, J = 30.0 Hz), 20.5 (s), 20.2 (s), 20.1 (s). IR (ATR): v 3401, 2925, 1644, 1616, 1512, 1497, 1417, 1297, 1262, 1223, 1185, 1152, 993, 736, 703 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₉H₂₀F₉N₂O₂ [M-H]⁻: 599.1376; found: 599.1382.

4-(*tert*-Butyl)-2-(9-(*tert*-butyl)-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihy dro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)phenol (7c)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7c** as a white solid in 95% yield (130 mg). Mp: 209.0–209.7 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.79. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.43 – 7.35 (m, 4H), 7.32 – 7.22 (m, 4H), 7.17 (s, 1H), 6.81 (d, J = 8.5 Hz, 1H), 5.61 (s, 1H), 2.42 (s, 3H), 1.31 (s, 9H), 1.18 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2 (s, 3F), -73.8 (s, 3F), -77.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.7 (s), 148.5 (s), 148.1 (s), 142.1

(s), 138.6 (s), 138.4 (s), 133.6 (q, J = 34.3 Hz), 129.8 (s), 129.3 (s), 128.8 (s), 128.0 (s), 126.7 (s), 125.2 (s), 124.2 (q, J = 289.9 Hz), 123.6 (q, J = 286.9 Hz), 123.4 (s), 119.9 (q, J = 275.2 Hz), 119.8 (s), 118.6 (s), 118.4 (s), 116.3 (s), 94.5 (q, J = 4.6 Hz), 84.8 (q, J = 30.7 Hz), 44.2 (q, J = 30.9 Hz), 34.7 (s), 34.1 (s), 31.3 (s), 31.2 (s), 21.1 (s). IR (ATR): v 3543, 2964, 2871, 1577, 1511, 1494, 1295, 1265, 1174, 1094, 1034, 994, 826, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₅H₃₂F₉N₂O₂ [M-H]⁻: 683.2315; found: 683.2322.

6-(7,8-Dimethyl-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*-chro meno[3,4-*c*]pyridazin-5-yl)-2,3-dimethylphenol (7d)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7d** as a white solid in 86% yield (108 mg). Mp: 222.5–223.1 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.82. ¹H NMR (400 MHz, DMSO- d_6) δ 8.35 (s, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.21 (d, J = 7.2 Hz, 2H), 7.15 (d, J = 7.2 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 7.4 Hz, 1H), 6.64 (d, J = 7.9 Hz, 1H), 6.09 (s, 1H), 2.30 (s, 3H), 2.15 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 1.97 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.1 (s, 3F), -68.7 (s, 3F), -74.9 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 153.5 (s), 149.5 (s), 139.5 (s), 139.3 (s), 139.2 (s), 137.5 (s), 132.3 (s), 131.5 (q, J = 32.9 Hz), 129.5 (s), 126.4 (s), 125.8 (s), 125.5 (s), 125.0 (s), 120.2 (q, J = 274.7 Hz), 118.6 (s), 82.7 (q, J = 28.9 Hz), 44.6 (q, J = 29.5 Hz), 20.5 (s), 19.9 (s), 19.4 (s), 12.7 (s), 11.7 (s). IR (ATR): v 3424, 3052, 1650, 1513, 1266, 1188, 730, 702, 618 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₁H₂₄F₉N₂O₂ [M-H]⁻: 627.1689; found: 627.1699.

2-(7,9-Dimethyl-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*-chro meno[3,4-*c*]pyridazin-5-yl)-4,6-dimethylphenol (7e)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7e** as a white solid in 85% yield (107 mg). Mp: 190.0–191.1 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.81. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.33 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 9.6 Hz, 2H), 6.97 (s, 1H), 6.90 (s, 1H), 5.78 (s, 1H), 2.60 (s, 3H), 2.46 (s, 3H), 2.35 (s, 3H), 2.26 (s, 3H), 2.20 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.5 (s, 3F), -73.1 (s, 3F), -76.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 152.2 (s), 147.7 (s), 138.8 (s), 138.5 (s), 133.9 (s), 133.8 (s), 133.6 (q, J = 34.5 Hz), 133.3 (s), 131.0 (s), 129.8 (s), 127.7 (s), 127.6 (s), 127.3 (s), 126.0 (s), 124.7 (s), 124.4 (q, J = 290.1 Hz), 124.0 (q, J = 287.2 Hz), 119.9 (q, J = 275.0 Hz), 119.1 (s), 116.6 (s), 94.7 (q, J = 4.7 Hz), 84.2 (q, J = 30.7 Hz), 44.1 (q, J = 30.4 Hz), 21.0 (s), 20.6 (s), 20.4 (s), 16.4 (s), 15.9 (s). IR (ATR): v 3557, 3289, 2925, 1513, 1477, 1237, 1218, 1184, 1156, 1077, 1040, 992, 847 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₁H₂₄F₉N₂O₂ [M-H]⁻: 627.1689; found: 627.1696.

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7f** as a light yellow solid in 83% yield (105 mg). Mp: 95.2–96.4 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.43. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.47 – 7.27 (m, 5H), 7.01 (s, 1H), 6.93 (d, J = 8.8 Hz, 1H), 6.85 (s, 2H), 6.62 (s, 1H), 5.69 (s, 1H), 3.82 (s, 3H), 3.66 (s, 3H), 2.45 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4 (s, 3F), -73.2 (s, 3F), -76.7 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.7 (s), 152.4 (s), 149.7 (s), 144.2 (s), 138.6 (s), 138.5 (s), 133.6 (q, J = 34.1 Hz), 129.8 (s), 128.9 (s), 125.4 (s), 124.2 (q, J = 289.7 Hz), 123.6 (q, J = 287.1 Hz), 121.8 (s), 120.0 (s), 119.9 (q, J = 275.0 Hz), 119.8 (s), 118.7 (s), 117.2 (s), 115.5 (s), 113.7 (s), 112.6 (s), 94.4 (q, J = 4.7 Hz), 85.0 (q, J = 30.8 Hz), 55.7 (s), 55.2 (s), 44.3 (q, J = 31.1 Hz), 21.1 (s). IR (ATR): v 3525, 2940, 2840, 1579, 1511, 1494, 1432, 1270, 1223, 1191, 1175, 1072, 1039, 1026, 995, 818 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₉H₂₀F₉N₂O₄ [M-H]⁻: 631.1274; found: 631.1279.

2-(9-Hydroxy-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*-chrome no[3,4-*c*]pyridazin-5-yl)benzene-1,4-diol (7g)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 1:1) gave final product **7g** as a white solid in 45% yield (54 mg). Mp: 244.0–245.2 °C. R_f (petroleum ether: ethyl acetate 1: 1) = 0.36. ¹H NMR (400 MHz, DMSO- d_6) δ 9.48 (s, 1H), 8.91 (d, J = 4.4 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 2H), 7.15 (s, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.83 – 6.69 (m, 2H), 6.57 (s, 2H), 5.96 (s, 1H), 2.33 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.0 (s, 3F), -70.8 (s, 3F), -75.2 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 153.7 (s), 149.8 (s), 149.1 (s), 148.9 (s), 144.0 (s), 139.3 (s), 137.7 (s),
131.7 (q, J = 33.1 Hz), 130.3 (s), 129.6 (s), 125.4 (s), 124.5 (q, J = 289.7 Hz), 123.7 (q, J = 287.2 Hz), 122.5 (s), 120.4 (s), 120.1 (q, J = 275.0 Hz), 119.4 (s), 118.3 (s), 117.0 (s), 115.7 (s), 113.2 (s), 95.5 (q, J = 4.3 Hz), 82.3 (q, J = 29.0 Hz), 44.5 (q, J = 29.9 Hz), 20.6 (s). IR (ATR): v 3420, 3050, 1656, 1512, 1266, 1189, 822, 729, 700, 615 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₁₆F₉N₂O₄ [M-H]⁻: 603.0961; found: 603.0969.

5-Iodo-2-(8-iodo-3-(*p*-tolyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*-chro meno[3,4-*c*]pyridazin-5-yl)phenol (7h)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7h** as a white solid in 55% yield (91 mg). Mp: 237.0–237.4 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.75 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.43 – 7.15 (m, 7H), 6.89 (d, J = 8.0 Hz, 1H), 5.64 (s, 1H), 2.45 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.6 (s, 3F), -73.9 (s, 3F), -77.0 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 156.2 (s), 151.0 (s), 139.0 (s), 138.2 (s), 134.6 (s), 134.0 (q, J = 34.4 Hz), 130.4 (s), 129.9 (s), 129.3 (s), 128.7 (s), 128.5 (s), 128.4 (s), 128.0 (s), 125.8 (s), 123.9 (q, J = 290.0 Hz), 123.1 (q, J = 287.3 Hz), 120.6 (s), 119.6 (q, J = 275.1 Hz), 117.0 (s), 97.9 (s), 95.8 (s), 93.6 (q, J = 4.9 Hz), 84.5 (q, J = 31.4 Hz), 43.7 (q, J = 31.2 Hz), 21.2 (s). IR (ATR): v 3545, 3047, 1596, 1556, 1512, 1479, 1400, 1265, 1224, 1190, 1155, 1066, 1021, 990, 933, 862, 811, 705 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₇H₁₄F₉J₂N₂O₂ [M-H]⁻: 822.8995; found: 822.9001.

1-(3-(*p*-Tolyl)-2,5,12c-tris(trifluoromethyl)-3,12c-dihydro-5*H*-benzo[5,6]chromen o[3,4-*c*]pyridazin-5-yl)naphthalen-2-ol (7i)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 4:1) gave final product **7i** as a white solid in 72% yield (97 mg). Mp: 267.0–268.1 °C. R_f (petroleum ether: ethyl acetate 4:1) = 0.42. ¹H NMR (400 MHz, DMSO- d_6) δ 10.04 (s, 1H), 8.35 (d, J = 6.5 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 6.8 Hz, 1H), 7.86 – 7.58 (m, 6H), 7.55 – 7.36 (m, 5H), 7.18 – 7.05 (m, 2H), 6.23 (s, 1H), 2.37 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.1 (s, 3F), -72.4 (s, 3F), -73.8 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 157.0 (s), 151.0 (s), 138.2 (s), 134.8 (s), 133.1 (s), 132.1 (q, J = 67.9, 33.9 Hz), 131.3 (s), 130.2 (s), 126.3 (s), 125.1 (s), 124.7 (s), 124.2 (s), 123.6 (s), 123.0 (q, J = 285.9 Hz), 120.6 (s), 120.0 (q, J = 275.4 Hz), 119.8 (s), 112.9 (s), 108.3 (s), 93.8 (q, J = 4.3 Hz), 82.1 (q, J = 29.7 Hz), 44.9 (q, J = 31.2 Hz), 20.6 (s). IR (ATR): v 3362, 3054, 1631, 1605, 1512, 1396, 1292, 1265, 1230, 1190, 1086, 989, 730, 703 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₅H₂₀F₉N₂O₂ [M-H]⁻: 671.1376; found: 671.1395.

2-(2-(*p*-Tolyl)-3,4a,12-tris(trifluoromethyl)-2,4a-dihydro-12*H*-benzo[7,8]chromen o[3,4-*c*]pyridazin-12-yl)naphthalen-1-ol (7j)

Following the general procedure and workup, and purification by column chromatography (silica gel, *n*-pentane: dichloromethane 1:1) gave final product **7j** as a white solid in 60% yield (81 mg). Mp: 240.6–241.1 °C. R_f (*n*-pentane: dichloromethane 1:1) = 0.77. ¹H NMR (400 MHz, DMSO- d_6) δ 9.71 (s, 1H), 8.26 – 8.18 (m, 1H), 8.12 – 8.01 (m, 2H), 7.91 – 7.85 (m, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.74 (d, J = 7.9 Hz, 2H), 7.55 – 7.36 (m, 5H), 7.19 (s, 4H), 6.37 (s, 1H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -59.9 (s, 3F), -68.7 (s, 3F), -74.3 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 152.3 (s), 147.8 (s), 139.4 (s), 137.6 (s), 134.4 (s), 134.0 (s), 132.1 (s), 131.7 (q, J = 33.2 Hz), 129.5 (s), 127.6 (s), 127.6 (s), 127.5 (s), 127.4 (s), 126.7 (s), 125.6 (s), 125.4 (s), 125.3 (s), 125.0 (s), 124.9 (d, J = 290.0 Hz), 124.1 (q, J = 287.3 Hz), 123.4 (s), 122.9 (s), 121.6 (s), 120.3 (d, J = 274.8 Hz), 119.4 (s), 117.4 (s), 116.0 (s), 96.8 (q, J = 4.5 Hz), 82.7 (q, J = 28.8 Hz), 44.9 (q, J = 29.6 Hz), 20.5 (s). IR (ATR): v 3388, 2258, 1648, 1512, 1397, 1265, 1188, 1091, 997, 808, 753 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₅H₂0F₉N₂O₂ [M-H]⁻: 671.1376; found: 671.1387.

4-(*tert*-Butyl)-2-(9-(*tert*-butyl)-3-(4-nitrophenyl)-2,5,10b-tris(trifluoromethyl)-3,1 0b-dihydro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)phenol (7k)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7k** as a white solid in 89% yield (127 mg). Mp: 182.0–183.0 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.65. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.51 (s, 1H), 7.42 (s, 2H), 7.33 – 7.22 (m, 2H), 7.00 (s, 1H), 6.83 (d, J = 8.5 Hz, 1H), 5.87 (s, 1H), 1.32 (s, 9H), 1.16 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.0 (s, 3F), -73.5 (s, 3F), -76.2 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ

153.6 (s), 148.6 (s), 148.2 (s), 146.3 (s), 145.9 (s), 142.3 (s), 133.1 (q, J = 35.0 Hz), 132.4 (s), 129.3 (s), 128.5 (s), 126.3 (s), 125.1 (s), 123.9 (q, J = 289.3 Hz), 123.7 (s), 123.5 (s), 123.4 (q, J = 287.0 Hz), 119.9 (q, J = 275.6 Hz), 118.9 (s), 118.6 (s), 118.5 (s), 115.5 (s), 99.5 (q, J = 3.7 Hz), 85.2 (q, J = 30.9 Hz), 45.0 (q, J = 30.8 Hz), 34.7 (s), 34.0 (s), 31.3 (s), 31.2 (s). IR (ATR): v 3546, 2964, 2871, 1596, 1526, 1495, 1344, 1296, 1266, 1192, 1175, 1144, 1110, 1067, 1031, 995, 857, 830, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₉F₉N₃O₄ [M-H]⁻: 714.2009; found: 714.2026.

2-(3-(3-Bromophenyl)-9-(*tert*-butyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)-4-(*tert*-butyl)phenol (7l)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **71** as a white solid in 91% yield (136 mg). Mp: 152.5–153.3 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 2H), 7.56 – 7.24 (m, 7H), 7.11 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 5.74 (s, 1H), 1.33 (s, 9H), 1.20 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.8 (s, 3F), -73.5 (s, 3F), -76.6 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.7 (s), 148.4 (s), 148.3 (s), 142.2 (s), 142.1 (s), 133.4 (q, J = 34.4 Hz), 131.2 (s), 130.5 (s), 129.0 (s), 128.2 (s), 128.1 (s), 126.5 (s), 124.1 (q, J = 290.0 Hz), 123.6 (q, J = 287.2 Hz), 123.5 (s), 122.5 (s), 119.9 (q, J = 275.3 Hz), 119.4 (s), 118.6 (s), 118.5 (s), 115.9 (s), 96.3 (q, J = 4.5 Hz), 85.1 (q, J = 31.0 Hz), 44.5 (q, J = 30.8 Hz), 34.7 (s), 34.0 (s), 31.3 (s), 31.2 (s). IR (ATR): v 3543, 2964, 2871, 1589, 1498, 1477, 1296, 1265, 1191, 1174, 1035, 995, 830, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₉BrF₉N₂O₂ [M-H]⁻: 749.1243; found: 749.1259.

2-(3-(3-Bromo-4-methylphenyl)-9-(*tert*-butyl)-2,5,10b-tris(trifluoromethyl)-3,10bdihydro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)-4-(*tert*-butyl)phenol (7m)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7m** as a white solid in 86% yield (131 mg). Mp: 192.8–194.0 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.77. ¹H NMR (400 MHz, DMSO- d_6) δ 9.64 (s, 1H), 7.80 (s, 1H), 7.56 (s, 1H), 7.44 – 7.25 (m, 4H), 7.16 (t, J = 6.3 Hz, 2H), 6.75 (d, J = 7.8 Hz, 1H), 6.37 (s, 1H), 2.33 (s, 3H), 1.26 (s, 9H), 1.14 (s, 9H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -59.4 (s, 3F), -71.3 (s, 3F), -75.4 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.4 (s), 149.6 (s), 146.8 (s), 140.4 (s), 140.3 (s), 137.3 (s), 131.7 (q, J = 33.6 Hz), 131.3 (s), 130.6 (s), 128.0 (s), 127.9 (s), 127.3 (s), 126.7 (s), 124.5 (q, J = 289.4 Hz), 124.4 (s), 123.9 (s), 117.4 (s), 97.5 (q, J = 2.8 Hz), 82.8 (q, J = 29.7 Hz), 44.8 (q, J = 30.0 Hz), 34.4 (s), 33.6 (s), 31.1 (s), 31.0 (s), 21.9 (s). IR (ATR): v 3389, 2963, 2258, 1648, 1493, 1298, 1269, 1190, 1114, 995 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₅H₃₁BrF₉N₂O₂ [M-H]: 761.1420; found: 761.1417.

4-(*tert*-Butyl)-2-(9-(*tert*-butyl)-3-(4-iodophenyl)-2,5,10b-tris(trifluoromethyl)-3,10 b-dihydro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)phenol (7n)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7n** as a white solid in 92% yield (146 mg). Mp: 231.0–232.0 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.76. ¹H NMR (400 MHz, DMSO- d_6) δ 9.62 (s, 1H), 7.97 – 7.74 (m, 3H), 7.36 (d, J = 7.2 Hz, 1H), 7.28 – 7.08 (m, 5H), 6.75 (d, J = 8.4 Hz, 1H), 6.39 (s, 1H), 1.26 (s, 9H), 1.13 (s, 9H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -59.2 (s, 3F), -71.1 (s, 3F), -75.4 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.4 (s), 149.6 (s), 146.8 (s), 141.3 (s), 140.3 (s), 138.2 (s), 131.6 (q, J = 34.2 Hz), 130.9 (s), 128.1 (s), 127.3 (s), 126.8 (s), 126.4 (s), 124.4 (s), 124.3 (q, J = 291.0 Hz), 123.6 (q, J = 286.9 Hz), 120.3 (s), 120.1 (q, J = 275.3 Hz), 119.0 (s), 117.7 (s), 117.5 (s), 97.7 (q, J = 2.9 Hz), 93.3 (s), 82.8 (q, J = 296.6 Hz), 44.9 (q, J = 29.7 Hz), 34.4 (s), 33.6 (s), 31.1 (s), 31.0 (s). IR (ATR): v 3380, 2963, 1641, 1486, 1414, 1296, 1265, 1190, 1173, 995, 940, 734, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₉F₉IN₂O₂ [M-H]⁻: 795.1125; found: 795.1143.

4-(tert-Butyl)-2-(9-(tert-butyl)-3-(4-fluorophenyl)-2,5,10b-tris(trifluoromethyl)-3,

10b-dihydro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)phenol (70)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **70** as a white solid in 93% yield (128 mg). Mp: 151.5–152.3 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.76. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.62 – 7.48 (m, 4H), 7.40 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 7.19 (t, J = 7.4 Hz, 2H), 6.92 (d, J = 8.3 Hz, 1H), 5.82 (s, 1H), 1.38 (s, 9H), 1.27 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.3 (s, 3F), -73.6 (s, 3F), -76.9 (s, 3F), -112.5 (s, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 248.7 Hz), 153.8 (s), 148.5 (s), 148.3 (s), 142.2 (s), 137.1 (d, J = 2.8 Hz), 133.6 (q, J = 34.3 Hz), 130.1 (s), 129.0 (s), 128.2 (s), 127.4 (d, J = 8.7 Hz), 126.6 (s), 124.3 (q, J = 289.8 Hz), 123.7 (q, J = 286.9 Hz), 123.5 (s), 119.9 (q, J = 275.0 Hz), 119.7 (s), 118.7 (s), 118.6 (s), 116.3 (d, J = 23.2 Hz), 116.2 (s), 95.1 (q, J = 4.4 Hz), 85.1 (q, J = 30.7 Hz), 44.4 (q, J = 31.0 Hz), 34.6 (s), 34.1 (s), 31.2 (s). IR (ATR): v 3546, 2965, 2872, 1508, 1295, 1266, 1192, 1175, 1151, 1094, 1033, 995, 831, 705 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₄H₂₉F₁₀N₂O₂ [M-H]: 687.2064; found: 687.2081.

4-(*tert*-Butyl)-2-(9-(*tert*-butyl)-3-(naphthalen-2-yl)-2,5,10b-tris(trifluoromethyl)-3 ,10b-dihydro-5*H*-chromeno[3,4-*c*]pyridazin-5-yl)phenol (7p)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7p** as a white solid in 85% yield (122 mg). Mp: 222.8–223.5 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.72. ¹H NMR (400 MHz, DMSO- d_6) δ 9.68 (s, 1H), 8.05 (d, J = 8.6 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.87 (s, 1H), 7.84 (s, 1H), 7.67 – 7.52 (m, 3H), 7.37

(d, J = 8.1 Hz, 1H), 7.28 (s, 1H), 7.18 (s, 2H), 6.78 (d, J = 8.3 Hz, 1H), 6.43 (s, 1H), 1.26 (s, 9H), 1.15 (s, 9H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -59.2 (s, 3F), -71.0 (s, 3F), -75.4 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 154.5 (s), 149.6 (s), 146.8 (s), 140.3 (s), 138.8 (s), 132.6 (s), 132.1 (q, J = 34.0 Hz), 132.0 (s), 130.4 (s), 129.4 (s), 128.1 (s), 127.9 (s), 127.7 (s), 127.3 (s), 127.1 (s), 126.9 (s), 126.8 (s), 124.5 (q, J =289.9 Hz), 124.4 (s), 123.7 (q, J = 286.4 Hz), 123.0 (q, J = 275.5 Hz), 122.8 (s), 122.6 (s), 120.4 (s), 118.9 (s), 117.9 (s), 117.5 (s), 97.1 (q, J = 4.6 Hz), 83.0 (q, J = 30.4 Hz), 44.8 (q, J = 29.3 Hz), 34.5 (s), 33.6 (s), 31.1 (s), 31.0 (s). IR (ATR): v 3395, 2963, 1632, 1601, 1500, 1398, 1297, 1265, 1223, 1171, 996, 736, 703 cm⁻¹. HRMS (ESI) m/z: calcd. for C₃₈H₃₂F₉N₂O₂ [M-H]⁻: 719.2315; found: 719.2332.

2-(3-(2-9*H*-Fluorene)-9-(*tert*-butyl)-2,5,10b-tris(trifluoromethyl)-3,10b-dihydro-5 *H*-chromeno[3,4-c]pyridazin-5-yl)-4-(*tert*-butyl)phenol (7q)

Following the general procedure and workup, and purification by column chromatography (silica gel, petroleum ether: ethyl acetate 8:1) gave final product **7q** as a white solid in 89% yield (135 mg). Mp: 150.0–151.5 °C. R_f (petroleum ether: ethyl acetate 8:1) = 0.72. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.86 – 7.75 (m, 2H), 7.71 (s, 1H), 7.63 – 7.53 (m, 3H), 7.50 – 7.31 (m, 6H), 6.94 (d, J = 8.2 Hz, 1H), 5.80 (s, 1H), 3.88 (s, 2H), 1.38 (s, 9H), 1.30 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.9 (s, 3F), -73.5 (s, 3F), -76.8 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 153.8 (s), 148.5 (s), 148.2 (s), 144.2 (s), 143.6 (s), 142.2 (s), 141.9 (s), 140.5 (s), 139.5 (s), 133.7 (q, J = 34.1 Hz), 129.5 (s), 128.9 (s), 128.1 (s), 127.2 (s), 126.9 (s), 126.8 (s), 125.0 (s), 124.4 (q, J = 289.8 Hz), 124.2 (s), 123.8 (q, J = 286.9 Hz), 123.5 (s), 122.1

(s), 120.2 (s), 120.0 (q, J = 276.1 Hz), 119.8 (s), 118.7 (s), 118.5 (s), 116.3 (s), 94.8 (q, J = 4.5 Hz), 85.0 (q, J = 30.7 Hz), 44.4 (q, J = 30.7 Hz), 36.8 (s), 34.6 (s), 34.1 (s), 31.3 (s), 31.3 (s). IR (ATR): v 3542, 3055, 2964, 1580, 1491, 1459, 1397, 1296, 1265, 1176, 1036, 995, 829, 704 cm⁻¹. HRMS (ESI) m/z: calcd. for C₄₁H₃₄F₉N₂O₂ [M-H]⁻: 757.2471; found: 757.2464.

1-(4-(3-(*tert*-butyl)-4-hydroxyphenyl)-1-(*p*-tolyl)-4,6-bis(trifluoromethyl)-1,4-dihy dropyridazin-3-yl)-2,2,2-trifluoroethan-1-one (8)

Obtained as a yellow solid in 78% yield (86 mg). Mp: 175.0–176.6 °C. R_f (petroleum ether: ethyl acetate 8: 1) = 0.56. ¹H NMR (400 MHz, DMSO- d_6) δ 9.81 (s, 1H), 7.33 (s, 4H), 7.13 (s, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.03 (s, 1H), 2.35 (s, 3H), 1.33 (s, 9H). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.7 (s, 3F), -67.9 (s, 3F), -70.7 (s, 3F). ¹³C NMR (101 MHz, DMSO- d_6) δ 175.6 (q, J = 33.1 Hz), 155.8 (s), 139.7 (s), 138.7 (s), 135.4 (s), 129.9 (s), 128.3 (q, J = 33.8 Hz), 128.1 (s), 128.0 (s), 126.4 (s), 126.2 (s), 125.2 (s), 124.8 (q, J = 286.9 Hz), 119.2 (q, J = 273.9 Hz), 116.6 (s), 116.0 (q, J = 292.0 Hz), 108.6 (s), 48.1 (q, J = 28.9 Hz), 34.4 (s), 29.0 (s), 20.6 (s). IR (ATR): v 3446, 3050, 2981, 1511, 1422, 1267, 1178, 1162, 729, 701 cm⁻¹. HRMS (ESI) m/z: calcd. for C₂₅H₂₀F₉N₂O₂ [M-H]⁻: 551.1376; found: 551.1389.

Crystal structure analyses.

The suitable crystals of **3c** (CCDC 2013786), **3z** (CCDC 2013787), **7c** (CCDC 2013788), and **8** (CCDC 2032426) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.³ Structure solution and refinement were carried out with the SHELXTL suite of programs.³ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

ORTEP diagram of compound **3c**. Thermal ellipsoids are drawn at 40% probability.

ORTEP diagram of compound 3z. Thermal ellipsoids are drawn at 40% probability.

ORTEP diagram of compound **7c**. Thermal ellipsoids are drawn at 40% probability.

ORTEP diagram of compound 8. Thermal ellipsoids are drawn at 40% probability.

References:

- (1) (a) Reay, A. J.; Hammarback, L. A.; Bray, J. T. W.; Sheridan, T.; Turnbull, D.;
 Whitwood, A. C.; Fairlamb, I. J. S. *ACS Catalysis* 2017, *7*, 5174; (b) Wang, M.;
 Fan, Q.; Jiang, X. *Green Chem.* 2018, *20*, 5469; (c) Yang, Y.-M.; Yao, J.-F.;
 Yan, W.; Luo, Z.; Tang, Z.-Y. *Org. Lett.* 2019, *21*, 8003.
- (2) Khudina, O. G.; Shchegol'kov, E. V.; Burgart, Y. V.; Kodess, M. I.; Kazheva,
 O. N.; Chekhlov, A. N.; Shilov, G. V.; Dyachenko, O. A.; Saloutin, V. I.;
 Chupakhin, O. N. J. Fluorine Chem. 2005, 126, 1230.
- (3) SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

¹³C NMR spectrum of **3a** in CDCl₃

^{19}F NMR spectrum of 3b in CDCl_3

¹³C NMR spectrum of **3b** in CDCl₃

¹H NMR spectrum of 3c in CDCl₃

^{19}F NMR spectrum of 3c in CDCl_3

37	82	62
-63.	-70.	-78.
4	Ĭ.	5

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR spectrum of 3c in CDCl_3

S57

¹⁹F NMR spectrum of **3d** in CDCl₃

 $= \left\{ \begin{array}{c} & & & \\ & &$

13 C NMR spectrum of **3d** in CDCl₃

	<u></u>	<u></u>		_
0000	9		0 -1 0 0 1 -1 0 0 -1	- D
				N - 3
4400	CN	0	N997000NN	
NNNN		0	N N N N N N N H + m M N N	4 -
-				1 1

¹H NMR spectrum of **3e** in CDCl₃

^{19}F NMR spectrum of 3e in CDCl₃

¹³C NMR spectrum of **3e** in CDCl₃

¹H NMR spectrum of **3f** in CDCl₃

98 46	67	10^{23}
- 0. - 1	е. Г	5775 7775

 ^{19}F NMR spectrum of **3f** in CDCl₃

¹³C NMR spectrum of **3f** in CDCl₃

¹H NMR spectrum of **3g** in CDCl₃

^{19}F NMR spectrum of 3g in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3g** in CDCl₃

¹H NMR spectrum of **3h** in DMSO- d_6

66	$ \begin{array}{c} 49 \\ 47 \\ 06 \\ 72 \\$	81
റ്	6. 6.	ri I

¹⁹F NMR spectrum of **3h** in DMSO- d_6

¹³C NMR spectrum of **3h** in DMSO- d_6

¹H NMR spectrum of **3i** in CDCl₃

¹⁹F NMR spectrum of **3i** in CDCl₃

28	67	86
63.	70.	.77
4	j,	5

¹³C NMR spectrum of **3i** in CDCl₃

¹H NMR spectrum of 3j in CDCl₃

$65 \\ 33 \\ 28 \\ 28 \\ 55 \\ 55 \\ 51 \\ 31 \\ 52 \\ 51 \\ 52 \\ 51 \\ 52 \\ 51 \\ 52 \\ 51 \\ 52 \\ 51 \\ 52 \\ 51 \\ 51$	37
6.7.7.9	ы. П

¹⁹F NMR spectrum of **3j** in CDCl₃

¹³C NMR spectrum of **3j** in CDCl₃

80 Fi 66	37	62	3.711 565 56
75. 74. 73.	49.	40.	28. $27.$ $27.$ $27.$ $27.$ $21.$ $221.$
	Ť	T	

¹H NMR spectrum of **3k** in CDCl₃

 ^{19}F NMR spectrum of 3k in CDCl₃

80	20	88	96
-62.	-03	-70.	-77.
F		2	1

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3k** in CDCl₃

¹H NMR spectrum of **3l** in CDCl₃

97 95 74 72	59	62	62
7.7. 7.7.	-0.	-5.	5

¹⁹F NMR spectrum of **3l** in CDCl₃

50 40

60

30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70

¹H NMR spectrum of 3m in CDCl₃

$$\begin{array}{c} L_{8,\ 26}^{8,\ 28} \\ L_{8,\ 26}^{8,\ 26} \\ 7_{7,\ 87}^{7,\ 89} \\ \sim 6,\ 36 \end{array}$$

¹⁹F NMR spectrum of **3m** in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

^{13}C NMR spectrum of **3m** in CDCl₃

¹H NMR spectrum of **3n** in CDCl₃

^{19}F NMR spectrum of **3n** in CDCl₃

¹³C NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of **30** in CDCl₃

¹³C NMR spectrum of **30** in CDCl₃

¹H NMR spectrum of **3p** in CDCl₃

$\begin{array}{c} 62 \\ 62 \\ 55 \\ 55 \\ 55 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78$	97
×××××××××××	-4.

 ^{19}F NMR spectrum of **3p** in CDCl₃

CF3 CF3

¹³C NMR spectrum of **3p** in CDCl₃

80 52 87	572 10 10 10 10 10 10 10 10 10 10 10 10 10	
(174. 174. 174. 173.	1121-122-123-133-133-133-133-133-133-133	

¹H NMR spectrum of **3q** in CDCl₃

¹³C NMR spectrum of **3q** in CDCl₃

¹H NMR spectrum of **3r** in CDCl₃

 ^{19}F NMR spectrum of $3\mathbf{r}$ in CDCl₃

 $F_{12} = F_{12} = F$

¹³C NMR spectrum of **3r** in CDCl₃

¹H NMR spectrum of **3s** in CDCl₃

^{19}F NMR spectrum of 3s in CDCl_3

35	3 3 84	
63.	70.	
4	15	

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3s** in CDCl₃

¹H NMR spectrum of **3t** in CDCl₃

55 45 47	49
6.7.7.7	-4.

¹⁹F NMR spectrum of **3t** in CDCl₃

 $F_{0} = F_{0} = F_{0$

¹³C NMR spectrum of **3t** in CDCl₃

	4 8 5 9 8 4 3 9 8 8 4 3 9 9 8 8 4 3 9 9 9 8 4 3 9 9 9 8 4 3 9 9 9 8 4 3 9 9 9 8 4 3 9 9 9 8 4 3 9 9 9 9 8 4 3 9 9 9 9 8 4 3 9 9 9 9 8 4 3 9 9 9 9 9 8 4 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ಕ್ಕ್ಷಣ	
-17	

¹H NMR spectrum of **3u** in CDCl₃

 ^{19}F NMR spectrum of 3u in CDCl_3

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **3u** in CDCl₃

¹H NMR spectrum of 3v in CDCl₃

$\begin{array}{c} 69 \\ 64 \\ 64 \\ 64 \\ 64 \\ 66 \\ 64 \\ 66 \\ 64 \\ 66 \\ 63 \\ 64 \\ 64$	97
	-4.

 ^{19}F NMR spectrum of 3v in CDCl₃

\[
 \lapha = 03.40
 \]

 --70.66

 \[
 \frac{-77.91}{5}

¹³C NMR spectrum of **3v** in CDCl₃

-30

10 0

-10 -20

$^{81}_{78}$	58 ± 22	22222222222222222222222222222222222222
174. 174. 174. 173.	142. 142. 139.	128. 128. 128. 127. 127. 127. 127. 833. 4356. 83. 4356. 83. 127. 83. 127. 83. 127. 83. 127. 83. 127.

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR spectrum of 3w in DMSO- d_6

¹⁹F NMR spectrum of 3w in DMSO- d_6

¹³C NMR spectrum of 3w in DMSO- d_6

¹H NMR spectrum of 3x in CDCl₃

$\begin{array}{c} 11\\ 92\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59\\ 59$	21
8	<u>о</u> .

 19 F NMR spectrum of 3x in CDCl₃

13 C NMR spectrum of 3x in CDCl₃

76 78 78 73	$\begin{array}{c} 664\\ 812\\ 822\\ 822\\ 822\\ 822\\ 822\\ 822\\ 822$
174. 174. 174.	1222.2333.25
\sim	

¹H NMR spectrum of 3y in DMSO- d_6

¹⁹F NMR spectrum of 3y in DMSO- d_6

97	52	79
61.	-69.	.77
4	ì	5

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of 3y in DMSO- d_6

¹H NMR spectrum of 3z in CDCl₃

 ^{19}F NMR spectrum of 3z in CDCl₃

7-63.27 --71.00 √-78.06

¹³C NMR spectrum of 3z in DMSO- d_6

10 0

-10

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹H NMR spectrum of **3aa** in CDCl₃

¹⁹F NMR spectrum of **3aa** in CDCl₃

41	84	12
63.	20.	78.
4	l.	5

^{13}C NMR spectrum of **3aa** in CDCl₃

¹H NMR spectrum of **3ab** in DMSO- d_6

¹⁹F NMR spectrum of **3ab** in DMSO- d_6

 $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

¹³C NMR spectrum of **3ab** in DMSO- d_6

¹H NMR spectrum of **4** in CDCl₃

19 F NMR spectrum of 4 in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

¹³C NMR spectrum of **4** in CDCl₃

 1 H NMR spectrum of **5** in CDCl₃

60 58 57 57	$\frac{37}{26}$	51
-7.7.7	4 4 4	~i

¹⁹F NMR spectrum of **5** in CDCl₃

¹³C NMR spectrum of **5** in CDCl₃

¹H NMR spectrum of **7a** in CDCl₃

^{19}F NMR spectrum of 7a in CDCl_3

¹³C NMR spectrum of **7a** in CDCl₃

¹H NMR spectrum of **7b** in DMSO- d_6

54 72 112 112 95 93 71 17	31 27 13
	55.57 57.57

¹⁹F NMR spectrum of **7b** in DMSO- d_6

¹³C NMR spectrum of **7b** in DMSO- d_6

20	n − 0 0 × 2 0 0 −		
C1 1~	と4のののいい-00040-- 1		- O L
	NNMMOMO	0 ~ 4 -	ы сл –
70	⊳ღ⊣თდⴑთთ⊳		
		2 7 7 7	000
	- $ -$	<u>ਰ</u> ਰ ਰ ਰ	
1 1			

¹H NMR spectrum of **7c** in CDCl₃

 ^{19}F NMR spectrum of 7c in CDCl_3

 ^{13}C NMR spectrum of 7c in CDCl_3

¹H NMR spectrum of **7d** in DMSO- d_6

$\begin{array}{c} 3.5 \\ 5.5 \\$	30 15 09 09 09
8	- 12 12 12 12

¹⁹F NMR spectrum of **7d** in DMSO- d_6

¹³C NMR spectrum of **7d** in DMSO- d_6

¹H NMR spectrum of **7e** in CDCl₃

^{19}F NMR spectrum of 7e in CDCl_3

¹³C NMR spectrum of **7e** in CDCl₃

S105

¹⁹F NMR spectrum of **7f** in CDCl₃

¹³C NMR spectrum of **7f** in CDCl₃

69 20 20 20 20 20 20 20 20 20 20 20 20 20	1000000000000000000000000000000000000	20 10 10 10 10 10 10 10 10 10 10 10 10 10	90
255.893338.8449556 255.833338.844955	44.001444111111222222	0000000	
		60 4 4 4 4 4 4 4 4	7

¹H NMR spectrum of **7g** in DMSO- d_6

¹⁹F NMR spectrum of **7g** in DMSO- d_6

¹³C NMR spectrum of **7g** in DMSO- d_6

¹H NMR spectrum of **7h** in CDCl₃

$\begin{array}{c} 88\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64$	45
22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	5.

¹⁹F NMR spectrum of **7h** in CDCl₃

¹³C NMR spectrum of **7h** in CDCl₃

. 99	$\begin{array}{c} & . & . & . & . & . & . & . & . & . & $	14 82 20	15
-156 -150	132 132 123 123 123 123 123 123	44. 43. 43.	-21.

¹H NMR spectrum of **7i** in DMSO- d_6

¹⁹F NMR spectrum of **7i** in DMSO- d_6

¹³C NMR spectrum of **7i** in DMSO- d_6

¹H NMR spectrum of **7j** in DMSO- d_6

¹⁹F NMR spectrum of **7j** in DMSO- d_6

¹³C NMR spectrum of **7j** in DMSO- d_6

$\begin{array}{c} 31\\ 31\\ 56\\ 56\\ 96\\ 96\\ 11\\ 11\\ 11\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	$52 \\ 54 \\ 56 \\ 57 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58$	888844869	9 8 - 2 8 -	<u>ജ</u> ജന ഗ്രീ
400 20 20 20 20 20 20 20 20 20 20 20 20 2	255.257.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	10101		ಬರ್ಗಟ ನ
222222222				444 0

¹H NMR spectrum of **7k** in CDCl₃

 ^{19}F NMR spectrum of 7k in CDCl_3

¹³C NMR spectrum of **7k** in CDCl₃

 1 H

¹ H NMR spectrum of 71 in $CDCl_3$	
で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	∠1. 33 ∕1. 20
$F_{3}C$ F	
ර්සිහිරී දී දේ දේ ස්. 16 15 14 13 12 11 10 9 8 7 6 5 4	မ်းကြ တံတံ 3 2 1 0 -1 -2 -3 -4

¹⁹F NMR spectrum of **7l** in CDCl₃

¹³C NMR spectrum of **7l** in CDCl₃

$ \begin{array}{c} 66 \\ 235 \\ 247 \\ 218 \\ 235 \\$	x 233 6 23 6 23 9 2 3 4 5 2 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	0.64.0	× 4
$29.0 \\ -20.0$	$\begin{array}{c} 222222222222222222222222222222222222$	0.044 44444 0.000000	
			$\frac{1}{2}$

¹H NMR spectrum of **7m** in DMSO- d_6

¹⁹F NMR spectrum of **7m** in DMSO- d_6

¹³C NMR spectrum of **7m** in DMSO- d_6

¹H NMR spectrum of **7n** in DMSO- d_6

62 888 888 888 888 886 886 886 886 886 8	26 13
6.	

¹⁹F NMR spectrum of **7n** in DMSO- d_6

¹³C NMR spectrum of **7n** in DMSO- d_6

$ \begin{array}{c} 38\\ 57\\ 28\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 28\\ 27\\ 28\\ 27\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28\\ 28$		00444600
$\begin{array}{c} 554. \\ 449. \\ 331. \\ 332. \\ 332. \\ 252. \\ 257. \\ 25$	2223337-77-78 2223337-77-78 2223337-77-78	
		4 4 4 4 m m m m

¹H NMR spectrum of **70** in CDCl₃

¹⁹F NMR spectrum of **70** in CDCl₃

¹³C NMR spectrum of **70** in CDCl₃

¹H NMR spectrum of **7p** in DMSO- d_6

¹⁹F NMR spectrum of **7p** in DMSO- d_6

¹³C NMR spectrum of **7p** in DMSO- d_6

 $\begin{array}{c} 154, 45\\ 1449, 62\\ 1449, 62\\ 1446, 83\\ 1446, 83\\ 1232, 61\\ 1232, 61\\ 1232, 61\\ 1232, 62\\ 1232, 25\\ 1312, 25\\ 131, 352\\ 1322, 25\\ 1322, 25\\ 1322, 25\\ 1322, 25\\ 1322, 25\\ 1322, 25\\ 14122, 56\\ 1$

¹H NMR spectrum of **7q** in CDCl₃

 ^{19}F NMR spectrum of 7q in CDCl_3

¹³C NMR spectrum of **7q** in CDCl₃

¹H NMR spectrum of intermediate \mathbf{I} in CDCl₃

 $^{19}\mathrm{F}$ NMR spectrum of intermediate I in CDCl_3

90

60

210 200 190 180 170 160 150 140 130 120 110 100

¹H NMR spectrum of **8** in DMSO- d_6

¹⁹F NMR spectrum of **8** in DMSO- d_6

¹³C NMR spectrum of **8** in DMSO- d_6

