Supporting Information

Zinc-Catalyzed Asymmetric Nitrooxylation of β-Keto Esters/Amides with a Benziodoxole-Derived Nitrooxy Transfer Reagent

Bin Li,‡ Xuan Cheng,‡ Zhen-Yu Guan, Si-Yuan Li, Tao Huo, Guo Cheng, Yan-Hui Fan, Fang-Shuai Zhou and Qing-Hai Deng*

The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China E-mail: ginghaideng@shnu.edu.cn

Table of Contents

I. General Information

All manipulations were maintained under an atmosphere of nirogen unless otherwise stated. Commercially available reagents were used without further purification. Solvents were pre-dried over activated 4 Å molecular sieves and were refluxed over sodium-benzophenone (toluene, tetrahydrofurane), phosphorus pentoxide (chloroform) or calcium hydride (dichloromethane, dichloroethane, acetonitrile) under an nitrogen atmosphere and collected by distillation. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 101 MHz NMR spectrometer. Infrared spectra were prepared as KBr pellets and were recorded on a Varian Excalibur 3100 series FT-IR spectrometer. Mass spectra were recorded by the mass spectrometry service of Shanghai Institute of Organic Chemistry. HPLC analyses on a Waters 1596 or Shimadzu SPD-15C. Optical rotations were measured with Rudolph Research Analytical in a 1 dm cuvette.I. L1-5^[1], L6^[2], L7^[3], L8^[4], L9^[5], L10^[6], L14^[7], L15^[2], $L16^{[8]}$ and $L20^{[7]}$ were synthesized according to the literature procedures, and others ligands were commercially available. The substrates β -Keto Esters^[9] and Amides^[10] were synthesized according to the literature procedures.

II. Optimization of Asymmetric Nitrooxylation of β-Keto Esters

Table S1. Optimization of the Reaction Conditions (Metal Salts) for the Asymmetric

 Nitrooxylation

MeO (2a , 0.15 mmol)	$ \begin{array}{c} 0_2 NO - I & O \\ Iu + & Lig 1 (12 mol 9 \\ Lig 1 (12 mol 9 \\ CH_2 Cl_2, 0 °C, 7 \\ 1 (1.2 equiv) \end{array} $	%) %) 2h MeO 3a	Bu ON NO Ph Ph Lig 1
entry	MX _n	yield $(\%)^b$	ee (%) ^c
1^d	-	60	-
2	Mg(OTf) ₂	90	0
3	Cu(OTf) ₂	94	-1
4	Zn(OTf) ₂	88	52
5	Ni(ClO ₄) ₂ ·6H ₂ O	82	-5
6	Fe(OTf) ₂	94	7
7	Co(OAc)2·4H2O	>99	-2
8	Sc(OTf) ₃	94	0
9	Ni(OTf) ₂	88	3
10	Ca(OTf) ₂	78	0
11	LiOTf	77	0
12	Al(OTf) ₃	82	1
13	Y(OTf) ₃	91	0
14	In(OTf) ₃	78	2

^{*a*}Reaction conditions: **2a** (0.15 mmol), **1** (1.2 equiv.), **MX**_n (10 mol %), **Lig 1** (12 mol %), DCM (2.0 mL), 0 °C, N₂ atmosphere. ^{*b*}The yields of isolated products. ^{*c*}Determined by HPLC analysis. ^{*d*} Carried out at rt for 5 h.

 Table S2. Optimization of the Reaction Conditions (Ligands) for the Asymmetric

 Nitrooxylation

^{*a*}Reaction conditions: **2a** (0.15 mmol), **1** (1.2 equiv.), Zn(OTf)₂ (10 mol %), Lig (12 mol %), DCM (2.0 mL), 0 °C, N₂ atmosphere.

 Table S3. Optimization of the Reaction Conditions (solvent) for the Asymmetric

 Nitrooxylation

5	CHCl ₃	90	11
6	DME	89	5
7	chlorobenzene	97	9
8	1,2-dibromoethane	78	3
9	DCE/Et ₂ O	84	43
10	DCE/MeOH	trace	-

^{*a*}Reaction conditions: **2a** (0.15 mmol), **1** (1.2 equiv.), Zn(OTf)₂ (10 mol %), Lig **1** (12 mol %), solvent (2.0 mL), 0 °C, N₂ atmosphere. ^{*b*}The yields of isolated products. ^{*c*}Determined by HPLC analysis.

Table S4. Optimization of the Reaction Conditions ("Zn" salts) for the Asymmetric

 Nitrooxylation

Me	O CO ₂ 'Bu + (2a , 0.15 mmol)	D2NO Image: D2 model Image: ZnX2 (10 mol %) image: Lig 1 (12 mol %) i	MeO 3a	Ph Ph Lig 1
	entry	ZnX ₂	yield (%) ^b	ee (%) ^c
	1	Zn(OTf) ₂	88	52
	2	$Zn(NTf_2)_2$	95	23
	3	Zn(BF ₄) ₂ ·xH ₂ O	83	62
	4^d	$Zn(SbF_6)_2$	89	64
	5	Zn(ClO ₄) ₂ ·6H ₂ O	99	72
	6	$Zn(OAc)_2$	87	11
	7	$Zn(O_2CCF_3)_2$	83	11
	8^e	Zn(O ₂ CPh) ₂	87	3

^{*a*}Reaction conditions: **2a** (0.15 mmol), **1** (1.2 equiv.), **MX**_n (10 mol %), **Lig 1** (12 mol %), DCM (2.0 mL), 0 °C, N₂ atmosphere. ^{*b*}The yields of isolated products. ^{*c*}Determined by HPLC analysis. ^{*d*}Zn(SbF₆)₂ was prepared *in stu* by the reaction of AgSbF₆ with ZnCl₂ in DCM. ^{*e*}Zn(O₂CPh)₂ was prepared *in stu* by the reaction of AgO₂CPh with ZnCl₂ in DCM.

Table S5. Optimization of the Reaction Conditions (temperature and additive) for the

Asymmetric Nitrooxylation

$MeO \underbrace{CO_2^{HU}}_{(2a, 0.15 \text{ mmol})} \underbrace{1 (1.2 \text{ equiv})}^{O_2NO - O} \underbrace{Zn(ClO_4)_2.6H_2O (10 \text{ mol }\%)}_{CH_2Cl_2, \text{ T or additive}} \underbrace{HeO}_{MeO} \underbrace{CO_2^{t}Bu}_{3a} \underbrace{CO_2^{t}Bu}_{ONO_2} \underbrace{CO_2^{t}Bu}_{Ph} \underbrace{HeO}_{Ph} \underbrace{HeO}_{Ph} \underbrace{CO_2^{t}Bu}_{Ph} \underbrace{HeO}_{Ph} \underbrace{HeO}_{Ph} \underbrace{CO_2^{t}Bu}_{Ph} \underbrace{HeO}_{Ph} \underbrace{HeO}_{$					
entry	T (°C)	additive	Time (h)	yield (%) ^b	ee (%) ^c
1	-20	-	5	83	53
2	0	-	2	99	72
3	rt	-	1.5	88	52
4	0	4 Å	2	76	1

^aReaction conditions: **2a** (0.15 mmol), **1** (1.2 equiv.), Zn(ClO₄)₂·6H₂O (10 mol %), Lig **1** (12 mol %),

DCM (2.0 mL), 0 °C, N₂ atmosphere. ^bThe yields of isolated products. ^cDetermined by HPLC analysis.

III. Preparation of reagent 1^[11]

To an over-dried flask were added 1-chloro-3,3-dimethyl-1,3-dihydro-1 λ^3 -benzo[*d*][1, 2]iodaoxole (10 mmol, 1.0 equiv.), AgNO₃ (20 mmol, 2.0 equiv.) and DCM (80 mL) at room temperature under N₂ atomasphere. After that the reaction was protected from light and stirred for 12 h at ambient temperature. Upon completion, the suspension was filtered over celite, and the filtrate was removed the solvent under reduced pressure to afford crude product as a yellow solid. The pure **reagent 1** was obtained via recrystallization in 95% yield (3.07 g, 9.5 mmol, pale yellow solid). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 1H), 1.60 (s, 6H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 149.0, 131.4, 131.3, 129.9, 126.8, 117.2, 89.3, 28.7; IR ν (KBr, cm⁻¹): 3101, 2982, 2924, 1495, 1462, 1441, 1260, 635.

IV. General Procedure for racemic Nitrooxylation of β-Keto Esters/Amides

To an over-dried flask was charged with 2 or 4 (0.15 mmol, 1.0 equiv.), reagent 1 (58.2 mg, 0.18 mmol, 1.2 equiv.), $Zn(OAc)_2$ (0.015 mmol, 10 mol %) and anhydrous CH₂Cl₂ (2 ml) under N₂ atmosphere. After that the reaction mixture was stirred at room temperature for 2 hours as monitoring by TLC. Upon completion the crude product was purified by colum chromatography via silica gel to afford the desired product 3 or 5.

V. General Procedure for Catalytic Asymmetric Nitrooxylation

To an over-dried flask was charged with $Zn(ClO_4)_2 \cdot 6H_2O$ (0.015 mmol, 10 mol %), L1 (0.018 mmol, 12 mol %) and anhydrous dichloromethane (2 mL) under N₂ atmosphere, then stirred at room temperature for 2 h. Substrates 2 or 4 (0.15 mmol, 1.0 equiv.) was added and stirred for 30 min at 0 °C. After that, to the mixture, **reagent 1** (0.18 mmol, 1.2 equiv.) was added and the reaction was keep in 0 °C under N₂ atmosphere as monitoring by TLC. Upon completion, the crude product was purified by column chromatography via silica gel to afford the desired asymmetric product 3 or 5.

VI. General Procedure for Gram Scale:

To an over-dried flask was charged with $Zn(ClO_4)_2 \cdot 6H_2O$ (0.4 mmol, 10 mol %), L1 (0.48 mmol, 12 mol %) and anhydrous dichloromethane (5 mL) under N₂ atomsphere, then stirred at room temperature for 2 h. **2k** (4 mmol, 1.0 equiv.) was added and stirred for 30 min at 0 °C. After that, to the mxiture, **reagent 1** (4.8 mmol, 1.2 equiv.) was added and the reaction was keep in 0 °C under N₂ atmosphere as monitoring by TLC. Upon completion, the crude product was purified by column chromatography via silica gel to afford the desired asymmetric product **3k** in 85% yield (1.20 g, 3.4 mmol, ee: 61%). After recrystallization, the product ee value up to 94% in 50% yield (711 mg, 2.0 mmol), (Figure. S1).

Figure S1. the HPLC spectra of 3k after recrystallization

(R)-tert-butyl-5-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate; 99% yield (48.0 mg, 0.149 mmol); white solid (m.p. : 118-120 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 1H), 6.97 (dd, J = 2.2, 8.6 Hz, 1H), 6.92 (s, 1H), 4.18 (d, J = 17.6 Hz, 1H), 3.92 (s, 3H), 3.33 (d, J = 17.6 Hz, 1H), 1.45 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 189.1, 167.2, 164.4, 155.0, 127.8, 125.9, 117.0, 109.6, 89.6, 85.0, 56.1, 38.5, 27.8; IR ν (KBr, cm⁻¹): 2978, 2933, 1746, 1719, 1649, 1600, 1295, 1263, 844; HPLC: (OD-H, Hexane/ ^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm), t_R (major-isomer) = 9.44 min, t_R (minor-isomer) = 10.56 min (72% *ee*); HRMS (ESI, m/z): calcd for C₁₅H₁₈NO7⁺ [M+H]⁺: 324.1078, found: 324.1080.

(*R*)-*tert*-butyl-5-methyl-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate; 95% yield (43.7 mg, 0.143 mmol); white solid (m.p. : 108-110 °C); **H NMR (400 MHz, CDCl**₃) δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.31 (s, 1H), 7.26 (d, *J*=7.6 Hz, 1H), 4.17 (d, *J* = 17.6 Hz, 1H), 3.34 (d, *J* = 17.6 Hz, 1H), 2.48 (s, 3H), 1.44 (s, 9H); ¹³C{¹H}NMR (101 **MHz, CDCl**₃) δ 190.7, 164.2, 152.3, 149.0, 130.5, 130.1, 126. 8, 125.7, 89.5, 85.0, 38.3, 27. 8, 22.5; **IR** *v* (**KBr, cm**⁻¹): 2980, 2928, 1753, 1721, 1656, 1295, 1150, 844, 824; **HPLC**: (OD-H, Hexane/ ^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm), t_R (major-isomer) = 6.4 min, t_R (minor-isomer) = 6.8 min (62% *ee*); **HRMS (ESI, m/z)**: calcd for C15H18NO6⁺ [M+H]⁺: 308.1129, found: 308.1132.

(*R*)-*tert*-butyl-5-bromo-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate; 97% yield (54.2 mg, 0.146 mmol); white solid (m.p. : 106-109 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 4.20 (d, *J* = 17.6 Hz, 1H), 3.39 (d, *J* = 17.6 Hz, 1H), 1.44 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 190.3, 163.7, 153.1, 132.8, 132.5, 131.7, 129.9, 126.9, 89.0, 85.5, 38.1, 27.8; IR *v* (KBr, cm⁻¹): 2983, 2933, 1759, 1731, 1671, 1597, 1295, 1150, 1056, 839, 712; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 99/1, 1.0 mL/min, 254 nm), t_R (major-isomer) = 8.8 min, t_R (minor-isomer) = 11.0 min (40% *ee*); HRMS (ESI, m/z): calcd for C₁₄H₁₄BrNNaO₆⁺ [M+Na]⁺: 393.9897, found: 393.9896.

(*R*)-*tert*-butyl-5-chloro-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate; 93% yield (45.7 mg, 0.140 mmol); white solid (m.p. : 122-125 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.53 (s, 1H), 7.44 (d, *J* = 8.3 Hz, 1H), 4.20 (d, *J* = 18.0 Hz, 1H), 3.38 (d, *J* = 17.6 Hz, 1H), 1.44 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 189.5, 169.8, 167.2, 163.9, 154.8, 128.5, 117.5, 113.6, 89.2, 85.4, 38.4, 27.8; IR *v* (KBr, cm⁻¹): 2980, 2930, 1761, 1729, 1654, 1594, 1295, 1150, 826; HPLC: (OD-H, Hexane/ ^{*i*}PrOH = 99/1, 1.0 mL/min, 254 nm), t_R (major-isomer) = 12.2 min, t_R (minorisomer) = 13.6 min (46% *ee*); HRMS (ESI, m/z): calcd for C₁₄H₁₄ClNNaO₆⁺ [M+Na]⁺: 350.0402, found: 350.0398.

(*R*)-*tert*-butyl-5-fluoro-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate; 96% yield (44.8 mg, 0.144 mmol); white solid (m.p. : 107-112 °C) ; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (dd, *J* = 5.2, 8.4 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 4.22 (d, *J* = 17.6 Hz, 1H), 3.39 (d, *J* = 18.0 Hz, 1H), 1.44 (d, *J* = 1.6 Hz, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 189.5, 168.5 (d, J = 261.6 Hz), 163.9, 154.8(d, J = 11.1 Hz), 129.3 (d, J = 2.0 Hz), 128.4(d, J = 11.1 Hz), 117.3 (d, J = 23.2 Hz), 113.4 (d, J = 23.2 Hz), 89.2, 85.4, 38.4 (d, J = 2.0 Hz), 27.8; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 99/1, 1.0 mL/min, 254 nm), t_R (major-isomer) = 11.3 min, t_R (minor-isomer) = 12.7 min (62% *ee*); HRMS (ESI, m/z): calcd for C₁₄H₁₅FNO₆⁺ [M+H]⁺: 312.0878, found: 312.0870.

(*R*)-*tert*-butyl-2-(nitrooxy)-1-oxo-5-phenyl-2,3-dihydro-1*H*-indene-2-carboxylate; 98% yield (54.3 mg, 0.147 mmol); white solid (m.p. : 86-89 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.72 – 7.60 (m, 4H), 7.48 (dt, *J* = 13.5, 7.0 Hz, 3H), 4.28 (d, *J* = 17.6 Hz, 1H), 3.45 (d, *J* = 17.6 Hz, 1H), 1.47 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 190.8, 164.2, 152.5, 150.3, 139.6, 131.7, 129.2, 128.2, 127.7, 126.3, 124.8, 89.5, 85.2, 38.5, 27.8; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm), t_R (major-isomer) = 9.8 min, t_R (minor-isomer) = 19.1 min (55% *ee*); HRMS (ESI, m/z): calcd for C₂₀H₂₀NO₆⁺ [M+H]⁺: 370.1285, found: 370.1280.

(R)-tert-butyl-4-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate; 97% yield (47.0 mg, 0.146 mmol); white solid (m.p: 75-77 °C); ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.14 (dd, J = 7.2, 1.6 Hz, 1H), 4.14 (dd, J = 18.0, 4.8 Hz, 1H), 3.92 (d, J = 2.8 Hz, 3H), 3.26 (dd, J = 18.2, 3.4 Hz, 1H), 1.44 (d, J = 4.0 Hz, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 191.7, 164.1, 156.7, 140.8, 134.1, 130.3, 117.01, 116.99, 89.1, 85.0, 55.8, 35.3, 27.8; HPLC: (OD-H, Hexane/ ^{*i*}PrOH = 99/1, 1.0 mL/min, 254 nm), t_R (major-isomer) = 8.1 min, t_R (minor-isomer) = 10.7 min (55% *ee*); **HRMS (ESI, m/z)**: calcd for $C_{15}H_{18}NO_7^+$ [M+H]⁺: 324.1078, found: 324.1082.

(R)-tert-butyl-6-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate; 92% yield (44.6 mg, 0.138 mmol); white solid (m.p. : 85-87 °C); ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 (d, J = 8.4 Hz, 1H), 7.29 (dd, J = 8.4, 2.4 Hz, 1H), 7.21 (d, J = 2.0 Hz, 1H), 4.14 (d, J = 17.6 Hz, 1H), 3.84 (s, 3H), 3.32 (d, J = 17.6 Hz, 1H), 1.44 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 191.4, 164.1, 160.3, 144.9, 134.0, 127.2, 126.7, 106.6, 89.9, 85.1, 55.8, 37.8, 27.8; IR ν (KBr, cm⁻¹): 2980, 2937, 1756; 1759; 1667; 1301; 1203; 1153; 1063; 840; HPLC: (OD-H, Hexane/ ^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm), t_R (major-isomer) = 7.4 min, t_R (minor-isomer) = 8.6 min (55% *ee*); HRMS (ESI, m/z): calcd for C₁₅H₁₈NO₇⁺ [M+H]⁺: 324.1078, found: 324.1087.

(R)-tert-butyl-6-methyl-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate;92% yield (42.4 mg, 0.138 mmol); light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 4.17 (d, *J* = 17.6 Hz, 1H), 3.34 (d, *J* = 17.6 Hz, 1H), 2.42 (s, 3H), 1.43 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 191.4, 164.2, 149.3, 138.9, 138.4, 133.0, 126.2, 125.7, 89.6, 85.0, 38.2, 27.8, 21.2; HPLC: (OD-H, Hexane/ⁱPrOH = 99.2/0.8, 1.0 mL/min, 254 nm), t_R (majorisomer) = 9.0 min, t_R (minor-isomer) = 13.0 min (55% *ee*); HRMS (ESI, m/z): calcd for C₁₅H₁₈NO₆⁺ [M+H]⁺: 308.1129, found: 308.1125.

(R)-tert-butyl-7-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate; 92% yield (44.6 mg, 0.138 mmol); white solid (m.p. : 127-130 °C); ¹**H NMR (400 MHz, CDCl₃)** δ 7.63 (t, J = 8.2 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 4.16 (d, J = 17.6 Hz, 1H), 3.95 (s, 3H), 3.32 (d, J = 17.6 Hz, 1H), 1.44 (s, 9H); ¹³C{¹H}**NMR (101 MHz, CDCl₃)** δ 188.3, 164.4, 159.8, 153.8, 138.9, 121.3, 118.07, 110.3, 89.4, 85.0, 56.2, 38.0, 27.9; **HPLC**: (AD-H, Hexane/ ^{*i*}PrOH = 90/10, 1.0 mL/min, 254 nm), t_R (major-isomer) = 9.3 min, t_R (minor-isomer) = 12.0 min (78% *ee*); **HRMS (ESI, m/z)**: calcd for C₁₅H₁₈NO7⁺ [M+H]⁺: 324.1078, found: 324.1081.

(*R*)-*tert*-butyl-5,6-dimethoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate; 99% yield (52.5 mg, 0.149 mmol); white solid (m.p. : 116-119 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 1.6 Hz, 1H), 6.90 (s, 1H), 4.13 (d, *J* = 17.6 Hz, 1H), 4.00 (s, 3H), 3.90 (s, 3H), 3.29 (d, *J* = 17.6 Hz, 1H), 1.44 (d, *J* = 1.6 Hz, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) 189.5, 164.4, 157.5, 150.4, 148.0, 125.4, 107.1, 105.6, 89.6, 85.0, 56.7, 56.3, 38.2, 27.8; IR *v* (KBr, cm⁻¹): 2978, 2935, 1756, 1741, 1638, 1270, 1265, 1148, 836, 774; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 80/20, 1.0 mL/min, 254 nm), t_R (major-isomer) = 5.8 min, t_R (minor-isomer) = 8.4 min (61% *ee*); HRMS (ESI, m/z): calcd for C₁₆H₁₉NNaO₈⁺ [M+Na]⁺: 376.1003, found: 376.1010.

(*R*)-*tert*-butyl-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-cyclopenta[b]naphthalene-2carboxylate; 94% yield (48.4 mg, 0.141 mmol); white solid (m.p: 149-154 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.94 – 7.84 (m, 2H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.4 Hz, 1H), 4.40 (d, *J* = 17.6 Hz, 1H), 3.58 (d, *J* = 17.6 Hz, 1H), 1.43 (s, 9H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 191.7, 164.2, 143.3, 138.3, 132.8, 130.7, 130.4, 130.1, 128.2, 127.6, 127.1, 124.8, 89.9, 85.2, 38.1, 27.8; IR *v* (KBr, cm⁻¹): 2975, 2928, 1739, 1724, 1647, 1295, 1150, 1133, 844, 749; HPLC: (OD-H, Hexane/ ^{*i*}PrOH = 97/3, 1.0 mL/min, 254 nm), t_R (major-isomer) = 9.5 min, t_R (minor-isomer) = 11.0 min (44% *ee*); HRMS (ESI, m/z): calcd for C₁₈H₁₇NNaO₆⁺ [M+Na]⁺: 366.0948, found: 366.0939.

(*R*)-Methyl-5-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate; 88% yield (42.7 mg, 0.132 mmol); white solid (m.p. : 105-110 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 1H), 6.98 (d, *J* = 9.6 Hz, 1H), 6.94 (s, 1H), 4.22 (d, *J* = 17.6 Hz, 1H), 3.93 (s, 3H), 3.81 (s, 3H), 3.37 (d, *J* = 17.6 Hz, 1H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 188.5, 167.4, 166.1, 154.8, 127.9, 125.6, 117.2, 109.7, 89.3, 56.1, 54.0, 38.4; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm), t_R (major-isomer) = 17.6 min, t_R (minor-isomer) = 18.7 min (6% *ee*); HRMS (ESI, m/z): calcd for C₁₂H₁₁NNaO₇⁺ [M+Na]⁺: 304.0428, found: 304.0431.

(*R*)-Ethyl-5-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate;
92% yield (40.7 mg, 0.138 mmol); white solid (m.p. : 109-113 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 1H), 6.98 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.94 (s, 1H), 4.28 (qd, *J* = 7.1, 2.3 Hz, 2H), 4.22 (d, *J* = 17.6 Hz, 1H), 3.93 (s, 3H), 3.36 (d, *J* = 17.6 Hz, 1H)

1H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 188.6, 167.4, 165.5, 154.9, 127.9, 125.7, 117.2, 109.7, 89.3, 63.4, 56.1, 38.4, 14.1; HPLC: (OD-H, Hexane/ ¹PrOH = 97/3, 1.0 mL/min, 254 nm), t_R (minor - isomer) = 21.2 min, t_R (major - isomer) = 24.1 min (21% *ee*); HRMS (ESI, m/z): calcd for C₁₃H₁₄NO₇⁺ [M+H]⁺: 296.0765, found: 296.0771.

(R)-Isopropyl-5-methoxy-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate; 96% yield (44.5 mg, 0.144 mmol); white solid (m.p. : 116-119 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.8 Hz, 1H), 6.98 (dd, J = 8.6, 2.2 Hz, 1H), 6.93 (s, 1H), 5.11 (m, 1H), 4.22 (d, J = 18.0 Hz, 1H), 3.93 (s, 3H), 3.35 (d, J = 17.6 Hz, 1H), 1.29 (d, J = 6.4 Hz, 3H), 1.22 (d, J = 6.0 Hz, 3H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 188.7, 167.3, 154.9, 127.9, 125.8, 117.1, 109.7, 89.3, 71.7, 56.1, 38.4, 21.7, 21.5; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 94/6, 1.0 mL/min, 254 nm), t_R (major-isomer) = 15.4 min, t_R (minor-isomer) = 16.7 min (14% *ee*); HRMS (ESI, m/z): calcd for C₁₄H₁₆NO₇⁺ [M+H]⁺: 310.0921, found: 310.0919.

(3r)-adamantan-1-yl-(2R)-2-(nitrooxy)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate; 88% yield (49.0 mg, 0.132 mmol); white solid (m.p. : 126-129 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.6 Hz, 1H), 7.71 (t, J = 7.0, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 4.22 (d, J = 18.0 Hz, 1H), 3.41 (d, J = 17.6 Hz, 1H), 2.16 (s, 3H), 2.06 (d, J = 2.8 Hz, 6H), 1.63 (t, J = 3.0 Hz, 6H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 191.5, 163.6, 151.8, 137.0, 132.9, 128.7, 126.5, 125.9, 89.2, 85.2, 41.1, 38.5, 36.0, 31.1; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 97/3, 1.0 mL/min, 254 nm), t_R

(major-isomer) = 11.0 min, t_R (minor-isomer) = 14.8 min (24% *ee*); **HRMS (ESI, m/z)**: calcd for C₂₀H₂₂NO₆⁺ [M+H]⁺: 372.1442, found: 372.1448.

2-(((3*r***)-adamantan-1-yl)carbamoyl)-1-oxo-2,3-dihydro-1***H***-inden-2-yl nitrate; 90% yield (50.0 mg, 0.135 mmol); white solid (m.p. : 140-142 °C); ¹H NMR (400 MHz, CDCl**₃) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 7.0 Hz, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 6.12 (s, 1H), 4.31 (d, *J* = 17.2 Hz, 1H), 3.27 (d, *J* = 16.8 Hz, 1H), 2.07 (s, 3H), 1.98 (s, 5H), 1.66 (d, *J* = 2.8 Hz, 7H); ¹³C{¹H}NMR (101 MHz, **CDCl**₃) δ 195.2, 161.2, 152.1, 136.9, 133.0, 128.5, 126.6, 125.5, 91.3, 53.2, 41.3, 36.3, 35.5, 29.5; HPLC: (AD-H, Hexane/ ^{*i*}PrOH = 95/5, 1.0 mL/min, 254 nm), t_R (minor - isomer) = 8.3 min, t_R (major-isomer) = 11.7 min (14% *ee*); HRMS (ESI, m/z): calcd for C₂₀H₂₃N₂Os⁺ [M+H]⁺: 371.1601, found: 371.1607.

2-(((3*r***)-adamantan-1-yl)carbamoyl)-5-methoxy-1-oxo-2,3-dihydro-1***H***-inden-2-yl nitrate; 89% yield (53.6 mg, 0.134 mmol); white solid (m.p. : 97-101 °C); ¹H NMR (400 MHz, CDCl₃) \delta 7.74 - 7.69 (m, 1H), 7.01 – 6.88 (m, 2H), 6.14 (s, 1H), 4.28 (d,** *J* **= 16.8 Hz, 1H), 3.90 (s, 3H), 3.20 (d,** *J* **= 17.2 Hz, 1H), 2.10 – 1.92 (m, 9H), 1.71 – 1.62 (m, 6H); ¹³C{¹H}NMR (101 MHz, CDCl₃) \delta 192.7, 167.2, 161.6, 155.2, 127.4, 125.9, 116.9, 109.6, 91.6, 56.0, 53.1, 41.2, 36.3, 35.4, 29.5; HPLC: (OD-H, Hexane/ ^{***i***}PrOH = 90/10, 1.0 mL/min, 254 nm), t_R (major-isomer) = 6.3 min, t_R (minor-isomer) = 11.0 min (12%** *ee***); HRMS (ESI, m/z): calcd for C₂₁H₂₅N₂O₆⁺ [M+H]⁺: 401.1707, found: 401.1711.**

2-(benzylcarbamoyl)-5-methoxy-1-oxo-2,3-dihydro-1*H***-inden-2-yl nitrate; 91% yield (48.8 mg, 0.137 mmol); white solid (m.p. : 97-101 °C); ¹H NMR (400 MHz, CDCl₃)** δ 7.77 – 7.72 (m, 1H), 7.37 – 7.22 (m, 5H), 7.00 – 6.93 (m, 2H), 6.81 (s, 1H), 4.55 – 4.47 (m, 1H), 4.45 – 4.33 (m, 1H), 3.92 (s, 3H), 3.28 (d, *J* = 17.6 Hz, 1H); ¹³C{¹H}NMR (101 MHz, CDCl₃) δ 192.1, 167.3, 163.2, 155.2, 137.1, 128.9, 127.9, 127.7, 127.5, 125.8, 117.1, 109.7, 91.3, 56.1, 44.4, 35.7; HPLC: (AD-H, Hexane/^{*i*}PrOH = 92/8, 1.0 mL/min, 254 nm), t_R (major-isomer) = 29.3 min, t_R (minor-isomer) = 34.1 min (6% *ee*); **HRMS (ESI, m/z):** calcd for C₁₈H₁₇N₂O₆⁺ [M+H]⁺: 357.1081, found: 357.1089.

2-(dibenzylcarbamoyl)-1-oxo-2,3-dihydro-1*H***-inden-2-yl nitrate; 84% yield (52.5 mg, 0.126 mmol); white solid (m.p. : 87-91 °C); ¹H NMR (400 MHz, CDCl₃) \delta 7.72 – 7.63 (m, 3H), 7.42 (t,** *J* **= 7.6 Hz, 1H), 7.38 – 7.33 (m, 4H), 7.32 – 7.27 (m, 1H), 7.23 (td,** *J* **= 7.4, 1.2 Hz, 1H), 7.19 – 7.11 (m, 2H), 6.94 (d,** *J* **= 8.0 Hz, 1H), 5.07 (d,** *J* **= 16.0 Hz, 1H), 4.97 (d,** *J* **= 14.8 Hz, 1H), 4.80 (d,** *J* **= 14.8 Hz, 1H), 4.56 (d,** *J* **= 17.6 Hz, 1H), 4.38 (d,** *J* **= 15.6 Hz, 1H), 3.56 (d,** *J* **= 17.6 Hz, 1H); ¹³C{¹H}NMR (101 MHz, CDCl₃) \delta 202.7, 167.9, 154.9, 136.5, 135.7, 134.3, 133.3, 131.5, 128.9, 128.1, 128.0, 127.8, 127.7, 127.5, 126.3, 126.2, 125.7, 124.9, 61.9, 51.2, 50.7, 38.8; HPLC: (AD-H, Hexane/¹PrOH = 85/15, 1.0 mL/min, 254 nm), t_R (major-isomer) = 20.2 min, t_R (minor-isomer) = 30.1 min (20%** *ee***); HRMS (ESI, m/z): calcd for C₂₄H₂₁N₂O₅⁺ [M+H]⁺: 417.1445, found: 417.1447.**

2-(dibenzylcarbamoyl)-5-methoxy-1-oxo-2,3-dihydro-1*H***-inden-2-yl nitrate**; 87% yield (58.3 mg, 0.131 mmol); white solid (m.p. : 95-100 °C); ¹**H** NMR (400 MHz, **CDCl3**) δ 7.63 (d, *J* = 8.8 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.30 – 7.27 (m, 1H), 7.24 – 7.11 (m, 3H), 7.06 (d, *J* = 2.0 Hz, 1H), 6.99 – 6.89 (m, 2H), 5.07 (d, *J* = 15.6 Hz, 1H), 4.95 (d, *J* = 14.8 Hz, 1H), 4.80 (d, *J* = 14.8 Hz, 1H), 4.50 (d, *J* = 17.6 Hz, 1H), 4.35 (d, *J* = 16.0 Hz, 1H), 3.94 (s, 3H), 3.49 (d, *J* = 17.6 Hz, 1H); ¹³C{¹H}NMR (101 MHz, **CDCl3**) δ 200.8, 168.1, 166.2, 158.0, 136.5, 134.7, 131.5, 128.9, 128.0, 127.7, 127.6, 127.38, 127.37, 126.3, 126.1, 124.9, 116.3, 109.4, 62.2, 55.9, 51.2, 50.7, 38.7; **HPLC**: (AD-H, Hexane/ ^{*i*}PrOH = 92/8, 1.0 mL/min, 254 nm), t_R (major-isomer) = 13.3 min, t_R (minor-isomer) = 38.8 min (12% *ee*); **HRMS (ESI, m/z)**: calcd for C₂₅H₂₃N₂O₆⁺ [M+H]⁺: 447.1551, found: 447.1558.

VII. Limited Substrates

Entry	Substrates	The result for racemic conditions ^a	The result for asymmtric conditions ^b
1	OOEt	23% of yield	No reaction
2	CF3	No reaction	No reaction
	0	~56% of yield (impurity with	~43% of yield (impurity
3	OMe	by-product () ^c	with by-product $()$
4	Ph N Boc	The substrate was decomposed	The substrate was decomposed

Table S6: The results for limited substrates

^{*a*} Reaction conditions: **substrate** (0.15 mmol), **1** (1.2 equiv), $Zn(OAc)_2$ (10 mol %), CH_2Cl_2 (1.5 mL), rt, nitrogen. ^{*b*} Reaction conditions: **substrate** (0.15 mmol), **1** (1.2 equiv), $Zn(CIO_4)_2 \cdot 6H_2O$ (10 mol %), ligand **1** (12 mol %), CH_2Cl_2 (1.5 mL), 0 °C, nitrogen. ^{*c*} The ¹H NMR Spectrum is shown in Figure S2.

Figure S2. The ¹H NMR Spectrum of impure product

VIII. Crystallographic Data

Identification code	cd17385	
Empirical formula	C9 H10 I N O4	
Formula weight	323.08	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 8.0323(15) Å	$\alpha = 65.902(3)^{\circ}$.
	b = 8.5118(16) Å	$\beta = 68.342(3)^{\circ}.$
	c = 9.7664(19) Å	$\gamma = 68.126(3)^{\circ}$.
Volume	546.78(18) Å ³	
Z	2	
Density (calculated)	1.962 Mg/m ³	
Absorption coefficient	2.922 mm ⁻¹	
F(000)	312	
Crystal size	0.200 x 0.170 x 0.140 n	nm ³
Theta range for data collection	2.716 to 25.498°.	
Index ranges	-9<=h<=7, -10<=k<=10), - 11<=l<=11
Reflections collected	3146	
Independent reflections	2031 [R(int) = 0.0281]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.7456 and 0.3346	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	2031 / 0 / 139	
Goodness-of-fit on F ²	1.100	
Final R indices [I>2sigma(I)]	R1 = 0.0283, wR2 = 0.0	0715
R indices (all data)	R1 = 0.0293, WR2 = 0.0)722
Extinction coefficient	0.065(4)	
Largest diff. peak and hole	0.759 and -1.056 e.Å ⁻³	

Table S7. Crystal data and structure refinement for *rac*-3a and 3k.

	rac-3a		3k		
Identification code	d8v17641		cu_d8v20406_0m		
Empirical formula	C15 H17 N C	07	C16 H19 N O8		
Formula weight	323.29		353.32		
Temperature	296(2) K		293(2)	Κ	
Wavelength	0.71073 Å		1.54173	8 Å	
Crystal system	Monoclinic		Monocl	inic	
Space group	P 21/c	P 21/c		P 21	
	a = 12.1197(6) Å	$\alpha = 90^{\circ}$.	a = 15.3075(5) Å	$\alpha = 90^{\circ}$.	
Unit cell dimensions	b = 13.2870(6) Å	β= 103.695(2)°.	b = 12.2353(4) Å	β=91.236(2)°.	
	c = 10.6235(5) Å	$\gamma = 90^{\circ}$.	c = 19.3019(6) Å	$\gamma = 90^{\circ}$.	
Volume	1662.11(14) Å	3	3614.2(2	2) Å ³	
Ζ	4		8		
Density (calculated)	1.292 Mg/m	1.292 Mg/m ³		g/m ³	
Absorption coefficient	0.104 mm ⁻¹	0.104 mm ⁻¹		m ⁻¹	
F(000)	680	680		3	
Crystal size	0.180 x 0.130 x 0.08	0.180 x 0.130 x 0.080 mm ³		0.200 x 0.120 x 0.100 mm ³	

Theta range for data collection

Index ranges

Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole 2.311 to 25.496°. $-14 \le h \le 14, -16 \le k \le 16, -12 \le l \le 12$ 26364 3093 [R(int) = 0.0611] 99.7 % Semi-empirical from equivalents 0.7456 and 0.6251 Full-matrix least-squares on F² 3093 / 0 / 213 1.028 R1 = 0.0477, wR2 = 0.1278 R1 = 0.0605, wR2 = 0.1411 -0.032(5)

0.257 and -0.265 e.Å⁻³

2.289 to 67.500°. -18<=h<=17, -14<=k<=13, -23<=l<=23 83425 12861 [R(int) = 0.0627] 99.3 % Semi-empirical from equivalents 0.7533 and 0.4869 Full-matrix least-squares on F² 12861 / 2 / 922 1.034 R1 = 0.0680, wR2 = 0.1861 R1 = 0.0871, wR2 = 0.2146 -0.09(6) 0.0186(15) 0.519 and -0.285 e.Å⁻³

IX. HPLC Data

Compound 3a

HPLC Conditions

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (95:5) Flow rate: 1.0 mL/min Detection: UV 254 nm

Racemic m٧ 250-10.156 9.220 200-150-100-50-0-15.0 min 2.5 5.0 7.5 10.0 12.5 0.0 Peak# Ret. Time Area % 1 9.220 49.82 2 10.156 50.18

Peak#	Ret. Time	Area %
1	9.442	85.89
2	10.556	14.11

recrystallization

Compound 3b

HPLC Conditions Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (95:5) Flow rate: 1.0 mL/min Detection: UV 254 nm

Compound 3c

HPLC Conditions

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (99: 1) Flow rate: 1.0 mL/min Detection: UV 254 nm

Peak#	Ret.time	Area	Area %
1	8. 735	19151805	50.26
2	10.955	18954848	49.74
		38106653	100.00

Chiral

Detector A Ch1 254nm

Peak#	Ret.time	Area	Area %
1	8.801	12377414	70.20
2	11.038	5253417	29.80
		17630831	100.00

Compound 3d

HPLC Conditions Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (99:1) Flow rate: 1.0 mL/min Detection: UV 254 nm

Racemic

Compound 3e

HPLC Conditions Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (99:1) Flow rate: 1.0 mL/min Detection: UV 254 nm

Compound 3f

HPLC Conditions Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (95:5) Flow rate: 1.0 mL/min Detection: UV 254 nm

Compound 3g

Racemic

Recrystallization

Compound 3h

Racemic

1	7.359	25531157	77.83
2	8.643	7273980	22.17

Compound 3i

Racemic

Peak#	Ret.time	Area	Area %
1	8.858	7068595	49. 59
2	12. 645	7186790	50.41
		14255385	100.00

4565485

Chiral

100.00

Compound 3j

Compound 3k

HPLC Conditions Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (80:20) Flow rate: 1.0 mL/min Detection: UV 254 nm

	ret.time	area	area %
1	6.780	5133799	82.847
2	10.259	1062946	17.153
Sum		6196744	100.000

Recrystallization

Compound 31

HPLC Conditions Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (97:3) Flow rate: 1.0 mL/min Detection: UV 254 nm

Compound 3m

Racemic

Compound 3n

Compound 3o

HPLC Conditions Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (94:6) Flow rate: 1.0 mL/min Detection: UV 254 nm

Racemic

Compound 3p

Compound 5a

Compound 5b

Compound 5c

Racemic

1	29.303	2465018	53.24
2	34.101	2164964	46.76

Compound 5d

Racemic

Compound 5e

HPLC Conditions Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: Hexanes / isopropanol (92:8) Flow rate: 1.0 mL/min Detection: UV 254 nm

Racemic

X. Reference

- Iserloh, U.; Oderaotoshi, Y.; Kanemasa, Shuji; and Curran. D. P. Org. Synth. 2003, 80, 46.
- [2]. Blasius, C. K.; Ren, B.-T.; Bürgy, D.; Liu, Y.-K.; Li, B.; Michalsky, I.; Wadepohl,
 H.; Deng, Q.-H. and Gade, L. H. J. Org. Chem. 2020, 85, 6719-6731.
- [3]. Seiji, I.; Yosuke, I.; Setyo, W. H.; Katsuyuki, A. and Hisao, N. *Tetra. Lett.* 2004, 45, 2121-2124.
- [4]. John C. K. C.; Derek M. D. and Rovis, T. J. Am. Chem. Soc. 2015, 137, 4445-4452.
- [5]. Nixon, T. D. and Ward B. D. Chem. Commun., 2012, 48,11790-11792.
- [6]. Wu, D.-Q.; Cheng, X.; Liu, Y.-K.; Cheng, G.; Guan, X.-Y.; Deng, Q.-H. Chin. J. Org. Chem. 2020, DOI: 10.6023/cjoc202005090.
- [7]. Deng, Q.-H; Wadepohl, H. and Gade, L. H. Chem. Eur. J. 2011, 17, 14922–14928.
- [8]. Ma, L; Jiao, P.; Zhang, Q.-H. and Xu, J.-X. Tetrahedron Asymmetry. 2005, 16, 3718-3734.
- [9]. Duan, Y.; Zhang, Z. and Zhang, C. Org. Lett. 2016, 23, 6176-6179.
- [10]. Zheng, L.-S.; Wei, Y.-L.; Jiang, K.-Z,; Deng, Y.; Zheng, Z.-J. and Xu, L.-W. Adv. Syn. Cat., 2014, 356, 3769-3776.
- [11]. Kita, Y.; Akai, S.; Okuno, T.; Egi, M.; Takada, T.and Tohma, H. *Heterocycles* 1996, 42, 47.

XI. NMR Spectra of New Compounds (¹H NMR, ¹³C NMR)

	0 ₂ NO-1-0 1	-148.987	131.395	~126.789			77.478 77.160 76.842				
ugt.wittprices/J-jeve					N			ай уліміна, убликації во «Дайунгурга у Б ^а лау і на мара		ya	
180	170 10	60 150	140 130	120	110 100	90 SI-49	80	70 60	50 40	30 20	

-4.224

→ 3. 406 → 3. 362

 $\sim^{3.469}$ $\sim^{3.425}$

 $\overbrace{76,842}^{77.477.477}$

-38.506

f1 (ppm) SI-61

—191. 392	— 164. 055 — 160. 281		-133.973 ~ 127.209 ~ 126.692	— 106. 588	89.846 85.090 77.478 -77.160 -76.843			
MeO O	CO2′Bu ONO2							
3n								
200 190 180	170 160	150 140	130 120	110 100 f1	90 80 70	60 50	40 30	20 10 0

SI-65

~3.365 ~3.321

—188. 271			—121. 317 —118. 067 —110. 272	89.440 85.019 77.578 -77.260 -76.943			
OM	CO2'Bu						
3	3j						
	0 170 160 150	140 130) 120 110	100 90 80 70 f1 (ppm) SI-69	60 50	40 30	20 10 0

 $\overbrace{}^{-3.598}_{-3.554}$

-4.244

-4.245-4.201 $\overbrace{-2.058}^{2.157}$

 $\overbrace{-1.548}^{1.633}, \overbrace{-1.548}^{1.633}$

-0.001

— 191. 488	— 163. 605	— 151. 817		89.205 85.179 77.477 777.477 776.842	
O CO ₂ Ad 3p					
ł	1				
	170 160		140 130 120 11	0 100 90 80 70 60 f1 (ppm)	 10 0 -1

-0.006

0.009

