Coumarin-based fluorescent probe for the rapid detection of peroxynitrite ‘AND’ biological thiols

Luling Wu,‡* Xue Tian,‡ Robin R. Groleau, Jie Wang, Hai-Hao Han, Shaun B. Reeksting, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, and Tony D. James‡*

‡Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom.

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.

Materials and Chemical Characterization (MC), University of Bath, Bath BA2 7AY, United Kingdom (https://doi.org/10.15125/mx6j-3r54).

Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.

†Equal contribution

E-mail: t.d.james@bath.ac.uk; lw960@bath.ac.uk

Table of contents

1. UV-Vis and fluorescence analysis ... S-2
2. Generation of various ROS ... S-10
3. Mass spectroscopic analysis ... S-11
4. Synthesis and characterisation of compounds 1-4 and ROS-AHC S-14
5. NMR spectra ... S-16
6. Author contributions ... S-21
7. References ... S-21
1. UV-Vis and fluorescence analysis

Figure S1. Absorption spectra of ROS-AHC (20 μM) only with and without ONOO⁻ (18 μM) wait 5 min/ GSH (26 μM) wait 5 min, and with addition of GSH (26 μM) wait 5 min then addition of ONOO⁻ (18 μM) with 5 min incubation before measurements in PBS buffer solution (10 mM, pH = 7.40).
Figure S2. (a) Fluorescence spectra of ROS-AHC (5 μM) with increasing additions of ONOO− (from 0 to 6 μM) in PBS buffer solution (10 mM, pH = 7.40) after 5 min. (b) Fluorescence intensity changes (based on the intensities at 461 nm) against ONOO− concentration. λ_{ex} = 400 nm (bandwidth 8 nm).
Figure S3. Fluorescence intensity changes (I/I_{ONOO^-}) for ROS-AHC (5 µM) with addition of ONOO$^-$ (6 µM), wait 5 min, then additions of GSH (0 – 4.5 µM) with 5 min incubation before measurement in PBS buffer solution (10 mM, pH = 7.40). $\lambda_{\text{ex}} = 400$ nm (bandwidth 8 nm)/$\lambda_{\text{em}} = 461$ nm.
Figure S4. (a) Fluorescence spectra of ROS-AHC (5 μM) with increasing additions of GSH (from 0 to 6 μM) with 5 min incubation before measurement in PBS buffer solution (10 mM, pH = 7.40). (b) Fluorescence intensity changes (based on the intensities at 461 nm) against GSH concentration. λ_{ex} = 400 nm (bandwidth 8 nm).
Figure S5. Fluorescence intensity changes ($\frac{I}{I_{\text{GSH}}}$) for ROS-AHC (5 μM) with addition of GSH (6 μM), wait 5 min, then additions of ONOO$^-$ (0 – 5.5 μM) with 5 min incubation before measurement in PBS buffer solution (10 mM, pH = 7.40). $\lambda_{\text{ex}} = 400$ nm (bandwidth 8 nm)/$\lambda_{\text{em}} = 461$ nm.

Figure S6. Selectivity bar chart of ROS-AHC (5 μM) with addition of ONOO$^-$ (6 μM), wait 5 min, then addition of various amino acids wait 5 min or 60 min before measurement in PBS buffer solution (10 mM, pH = 7.40), 1 – blank; 2 – GSH (Glutathione, 4 μM); 3 – Cys (Cysteine, 4 μM); 4 – Hcy (Homocysteine, 4 μM); 5 – Glu (Glutamic acid, 500 μM); 6 – Phe (Phenylalanine, 500 μM); 7 – Asp (Aspartic acid, 500 μM); 8 – Pro (Proline, 500 μM); 9 – Val
(Valine, 500 μM); 10 – Ser (Serine, 500 μM); 11 – Lys (Lysine, 500 μM); 12 – Iso (Isoleucine, 500 μM); 13 – His (Histidine, 500 μM); 14 – Arg (Arginine, 500 μM). \(\lambda_{ex} = 400 \text{ nm} \) (bandwidth 8 nm)/ \(\lambda_{em} = 461 \text{ nm} \).

Figure S7. Selectivity bar chart of ROS-AHC (5 μM) with addition of GSH (6 μM), wait 5 min, then addition of various ROS wait 5 min or 60 min before measurement in PBS buffer solution (10 mM, pH = 7.40). 1 – blank; 2 – ONOO\(^-\) (5 μM); 3 – HOCl (100 μM); 4 – H\(_2\)O\(_2\) (100 μM); 5 – ROO\(^\cdot\) (100 μM); 6 – •OH (100 μM); 7 – O\(_2\)\(^{.-}\) (100 μM); 8 – \(^1\)O\(_2\) (100 μM). \(\lambda_{ex} = 400 \text{ nm} \) (bandwidth 8 nm)/ \(\lambda_{em} = 461 \text{ nm} \).
Figure S8. Fluorescence intensity over time of the addition of ROS-AHC (5 μM) followed by the addition of GSH (4 μM) to ONOO⁻ (6 μM) in PBS buffer solution (10 mM, pH = 7.40). λ_ex = 400 nm (bandwidth 8 nm)/ λ_em = 461 nm.

Experimental for Figure S8: A solution of ONOO⁻ (6 μM) in PBS buffer solution was placed in a Greiner Bio-One microplate (96-well, PS, f-bottom (chimney well), black-walled), and the intensity was measured every 25 s for 200 s. A solution of ROS-AHC (6 μM) was then pumped into this solution, and fluorescence was then measured every 25 s from 228 s to 1303 s. A solution of GSH (4 μM) was then added, and fluorescence was measured every 25 s from 1331 s to 3006 s.
Figure S9. (a) Fluorescence intensity over time of the addition of ROS-AHC (5 μM) with addition of GSH (6 μM) at 200 s in PBS buffer solution (10 mM, pH = 7.40). λ_{ex} = 400 nm (bandwidth 8 nm)/ λ_{em} = 461 nm. (b) Fluorescence intensity over time of the addition of the addition of a pre-mixed (5 min) solution of ROS-AHC (5 μM) and GSH (6 μM) to ONOO (5 μM) at 200 s in PBS buffer solution. λ_{ex} = 400 nm (bandwidth 8 nm)/ λ_{em} = 461 nm.

Experimental for Figure S9: (a) A solution of ROS-AHC (5 μM) in PBS buffer solution was placed in a Greiner Bio-One microplate (96-well, PS, f-bottom (chimney well), black-walled), and the intensity was measured every 25 s for 200 s. A solution of GSH (6 μM) was then pumped into this solution, and fluorescence was measured every 25 s from 228 s to 803 s. (b) A solution of ONOO (6 μM) in PBS buffer solution was place in a Greiner Bio-One microplate (96-well, PS, f-bottom (chimney well), black-walled), and the intensity was measured every 25 s for 200 s. A solution of ROS-AHC (5 μM) and GSH (6 μM), premixed for 5 min, was then pumped into this solution, and the fluorescence was measured every 25 s from 228 s to 803 s.
2. Generation of various ROS

ROO•
ROO• was generated from 2, 2'-azobis (2-amidinopropane) dihydrochloride. AAPH (2, 2’ azobis (2-amidinopropane) dihydrochloride, 1 M) was added into deionizer water, and then stirred at 37 °C for 30 min.

O2•−
Superoxide was generated from KO2. KO2 and 18-crown-6 ether (2.5 eq) were dissolved in DMSO to afford a 0.25 M solution.

•OH
Hydroxyl radical was generated by the Fenton reaction. To prepare •OH solution, hydrogen peroxide (H2O2, 10 eq) was added to Fe(ClO4)2 in deionised water.

¹O2
¹O2 was generated by reacting H2O2 (1 mM) with NaClO (1 mM). The solution of H2O2 was added in one portion to the aqueous solution of NaClO and stir for 2 minutes, using the prepared solution immediately.

ONOO−
0.6 M NaNO2, 0.6 M HCl, 0.7 M H2O2 was added simultaneously to a 3 M NaOH solution at 0 °C. The concentration of peroxynitrite in a 0.5 M NaOH aqueous solution was determined from the absorption at 302 nm (Ɛ = 1670 M⁻¹ cm⁻¹).

ClO•
The concentration of ClO• was determined from the absorption at 292 nm (Ɛ = 350 M⁻¹ cm⁻¹).

H2O2
The concentration of H2O2 was determined from the absorption at 240 nm (Ɛ = 43.6 M⁻¹ cm⁻¹).
3. Mass spectroscopic analysis

Figure S10. HRMS spectrum of ROS-AHC (45 μM).
Figure S11. LC-MS spectrum of ROS-AHC (45 μM) + ONOO⁻ (1.5 equiv.).
Figure S12. LC-MS spectrum of **ROS-AHC (45 μM)** + **ONOO⁻ (1.5 equiv.) + GSH (3.0 equiv.)**.
4. Synthesis and characterisation of compounds 1-4 and ROS-AHC

![Chemical structure diagram]

Scheme S1. Synthesis of target ROS-AHC.

Synthesis of compounds 1-4

Compounds 1-4 were synthesized using adapted literature procedures.\(^1\)\(^2\)

Compound 4

M.p. 241 °C; \(^1^H\) NMR (500 MHz, DMSO-\(d_6\)) \(\delta_H\) 9.75 (s, 1H), 8.62 (s, 1H), 7.74 (d, \(J = 8.5\) Hz, 1H), 7.27 (d, \(J = 2.1\) Hz, 1H), 7.13 (dd, \(J = 8.5, 2.2\) Hz, 1H), 2.30 (s, 3H), 2.17 (s, 3H); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_C\) 170.2 (s), 168.9 (s), 157.3 (s), 150.9 (s), 149.9 (s), 128.5 (s), 124.1 (s), 123.1 (s), 119.0 (s), 117.4 (s), 109.7 (s), 23.9 (s), 20.8 (s). HRMS (ESI\(^+\)): calc. for C\(_{13}\)H\(_{11}\)NO\(_5\) [M+H]\(^+\) 262.0710 m/z, found 262.0711 m/z.

Compound 3

M.p. 247 °C; \(^1^H\) NMR (500 MHz, DMSO-\(d_6\)) \(\delta_H\) 9.80 (s, 1H), 7.23 (d, \(J = 8.4\) Hz, 1H), 6.69 – 6.64 (m, 2H), 5.22 (bs, 2H); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_C\) 159.0 (s), 156.1 (s), 149.3 (s), 130.2 (s), 125.7 (s), 113.5 (s), 112.9 (s), 109.8 (s), 101.8 (s). HRMS (ESI\(^+\)): calc. for C\(_9\)H\(_7\)NO\(_3\) [M+H]\(^+\) 178.0499 m/z, found 178.0500 m/z.

Compound 2

M.p. 247 °C; \(^1^H\) NMR (500 MHz, DMSO-\(d_6\)) \(\delta_H\) 9.80 (s, 1H), 7.23 (d, \(J = 8.4\) Hz, 1H), 6.69 – 6.64 (m, 2H), 5.22 (bs, 2H); \(^{13}\)C NMR (126 MHz, DMSO-\(d_6\)) \(\delta_C\) 159.0 (s), 156.1 (s), 149.3 (s), 130.2 (s), 125.7 (s), 113.5 (s), 112.9 (s), 109.8 (s), 101.8 (s). HRMS (ESI\(^+\)): calc. for C\(_9\)H\(_7\)NO\(_3\) [M+H]\(^+\) 178.0499 m/z, found 178.0500 m/z.

Compound 1

M.p. 189 °C; \(^1^H\) NMR (500 MHz, DMSO-\(d_6\)) \(\delta_H\) 10.45 (bs, 1H), 10.05 (s, 1H), 8.57 (s, 1H), 7.56 (d, \(J = 8.6\) Hz, 1H), 6.81 (dd, \(J = 8.5, 2.3\) Hz, 1H), 6.75 (d, \(J = 2.2\) Hz, 1H), 6.72 (d, \(J =
11.8 Hz, 1H), 6.50 (d, J = 11.8 Hz, 1H), 3.69 (s, 3H); 13C NMR (126 MHz, DMSO-d_6) δ_C
167.1 (s), 163.1 (s), 159.8 (s), 157.7 (s), 151.7 (s), 130.9 (s), 129.5 (s), 129.2 (s), 126.6 (s),
120.6 (s), 113.7 (s), 111.3 (s), 101.9 (s), 51.6 (s). HRMS (ESI$^+$): calc. for C$_{14}$H$_{11}$NO$_6$
[M+Na]$^+$ 312.0479 m/z; found 312.0485 m/z.

Synthesis of ROS-AHC

4-Bromomethylphenylboronic acid pinacol ester (0.22 g, 0.74 mmol) and K$_2$CO$_3$ (0.10 g, 0.74
mmol) were added to a solution of 1 (0.18 g, 0.62 mmol) in dry DMF (6 mL) under a N$_2$
atmosphere. The resulting suspension was stirred at room temperature for 5 h. The reaction
mixture was diluted with EtOAc (90 mL) and washed with brine (90 mL × 3), dried over
anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The crude product obtained was purified by
flash chromatography (SiO$_2$, 30% EtOAc in petroleum ether) to afford the desired product
ROS-AHC as a yellow solid (72 mg, 23% yield). M.p. 177 ºC; 1H NMR (500 MHz, CDCl$_3$)
δ_H 9.95 (s, 1H), 8.76 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.40 (d, J =
8.6 Hz, 1H), 6.95 (dd, J = 8.7, 2.4 Hz, 1H), 6.89 (d, J = 2.2 Hz, 1H), 6.42 (d, J = 12.7 Hz, 1H),
6.27 (d, J = 12.7 Hz, 1H), 5.14 (s, 2H), 3.86 (s, 3H), 1.35 (s, 12H); 13C NMR (126 MHz,
DMSO-d_6) δ_C 166.3 (s), 163.1 (s), 160.6 (s), 158.8 (s), 151.9 (s), 139.1 (s), 136.3 (s), 135.3 (s),
129.0 (s), 127.1 (s), 126.7 (s), 125.6 (s), 121.8 (s), 114.0 (s), 113.4 (s), 102.0 (s), 84.0 (s), 70.6
(s), 52.9 (s), 25.0 (s). HRMS (ESI$^+$): calc. for C$_{27}$H$_{28}$BNO$_8$ [M+H]$^+$ 506.1986 m/z; found
506.1990 m/z.
5. NMR spectra

Figure S13. 1H NMR (500 MHz, DMSO – d_6) of compound 4.

Figure S14. 13C(1H) NMR (126 MHz, DMSO – d_6) of compound 4.
Figure S15. 1H NMR (500 MHz, DMSO – d_6) of compound 3.

Figure S16. 13C{^1}H NMR (126 MHz, DMSO – d_6) of compound 3
Figure S17. 1H NMR (500 MHz, DMSO – d_6) of compound 2.

Figure S18. 13C{1H} NMR (126 MHz, DMSO – d_6) of compound 2.
Figure S19. 1H NMR (500 MHz, DMSO – d_6) of compound 1.

Figure S20. 13C(1H) NMR (126 MHz, DMSO – d_6) of compound 1.
Figure S21. 1H NMR (500 MHz, CDCl$_3$) of ROS-AHC.

Figure S22. 13C(1H) NMR (126 MHz, CDCl$_3$) of ROS-AHC.
6. Author contributions
Luling Wu – conceived the idea, synthesized the probe and wrote the manuscript.
Xue Tian – wrote the manuscript with Luling Wu and carried out the optical experiments
Robin R. Groleau – provided advice and reviewed and edited the manuscript
Jie Wang – aided Hai-Hao Han with the cellular experiments
Hai-Hao Han – carried out the cellular experiments
Shaun B. Reeksting – helped with the mass spectroscopic analysis
Adam C. Sedgwick – provided advice and reviewed and edited the manuscript
Xiao-Peng He – supervisor of Hai-Hao Han and Jie Wang
Steven D. Bull – supervisor of Luling Wu, Xue Tian and Robin R. Groleau
Tony D. James – lead supervisor

7. References