Supplementary information

Anisotropic Mesoporous Silica/Microgel Core-Shell Responsive Particles

Julien Schmittab, Caroline Hartwiga, Jérôme J. Crassousac, Adriana M. Mihuta, Peter Schurtenbergerad and Viveka Alfredssona

a Division of Physical Chemistry, Department of Chemistry, Lund University, 221 00 Lund, Sweden.
b LSFC Laboratoire de Synthèse et Fonctionnalisation des Céramiques UMR 3080 CNRS / Saint-Gobain CREE, Saint-Gobain Research Provence, 550 avenue Alphonse Jauffret, Cavaillon, France
c Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany.
d Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden.

Figure S1: SEM micrographs of silica (a) platelets, (b) primary particles and (c) rods from powder deposition on the stub.

![SEM micrographs of silica](image-url)
Figure S2: SEM micrographs of hybrid silica/PNIPAM (a) platelets, (b) primary particles and (c) rods from droplet deposition of a 0.2 wt% suspension on a glass coverslip then deposited on the stub. The black arrows highlight the PNIPAM bridges between particles.

Figure S3: SEM micrographs of hybrid silica/PNIPAM (a) platelets, (b) primary particles and (c) rods obtained after spin-coating of suspensions of particles at 0.01 wt% on a glass surface.
Figure S4: Cryo-TEM micrographs of hybrid silica/PNIPAM (a and b) platelets, (c and d) primary particles and (e and f) rods from dispersions at 0.2 wt% at 20°C.
Figure S5: Plot of Γ versus q^2, with Γ extracted using the second order cumulant analysis of the correlation function $g^1(\tau)$, obtained from DLS measurements at 50° ($q=11.18$ µm$^{-1}$), 90° ($q=18.70$ µm$^{-1}$) and 110° ($q=21.67$ µm$^{-1}$) for hybrid silica/PNIPAM rods at 18°C. The fit in blue gives the translational diffusion coefficient D_t (µm²s$^{-1}$) ($\Gamma = D_t q^2$)

Video S1: CLSM video of a suspension made of hybrid core-shell silica/PNIPAM rods at 2wt% and 25°C without electric field

Video S2: CLSM video of a suspension made of hybrid core-shell silica/PNIPAM rods at 2wt% and 25°C under an alternate electric field, with a field strength $E=50$ kV/m and
frequency $f=160$ kHz. The rods are aligned along the direction of the field, along the imaging plane.