Enhanced photoelectrochemical biosensing performance for Au nanoparticle-polyaniline-TiO$_2$ heterojunction composites

Bingdong Yana, Xiaoru Zhaoa, Delun Chena, Yang Caoa, Chuanzhu Lvc, Jinchun Tua

Xiaohong Wanga*, Qiang Wub*

a State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China;

b School of Tropical Medicine and Laboratory Medicine, MOE Key Laboratory of Emergency and Trauma, Hainan Medical University, Haikou 571199, P. R. China;

c Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University

* Corresponding authors.

E-mail addresses: wangxiaohong@hainu.edu.cn; wuqiang001001@aliyun.com.
Fig. S1. Optimization of deposition time. The photocurrent was measured before and after polyaniline deposition, and 5 min was selected as the optimum deposition time.
Fig. S2. Optimization of illumination time. The photocurrents before and after the deposition of Au NPs were measured, and 5 min was selected as the optimum illumination time.
Fig. S3. Full XPS spectrum of Au-PANI-TiONTAs with Ti 2p, O 1s, C 1s, N 1s, Au 4d, and Au 4f peaks.
Table S1. Recovery study for determining glucose in human serum.

<table>
<thead>
<tr>
<th>C_{added} (mM)</th>
<th>C_{found} (mM)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.93</td>
<td>3.78</td>
<td>96.18</td>
</tr>
<tr>
<td>11.19</td>
<td>10.99</td>
<td>98.21</td>
</tr>
<tr>
<td>11.87</td>
<td>11.92</td>
<td>100.42</td>
</tr>
</tbody>
</table>