Supporting Information

Micron-sized SiO_x/N-doped carbon composite spheres fabricated with

biomass chitosan for high-performance lithium-ion battery anodes

Dajin Liu^{a,b}, Zhipeng Jiang^{a,b}, Wei Zhang^a, Jingqi Ma^{a,b}, Jia Xie^{a*}

^aState Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

^bState Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

E-mail address: xiejia@hust.edu.cn

Fig. S1. FTIR spectra of raw CS and organosilica/CS composite.

Fig. S2. SEM image of SiO_x/organosilica-1(a) and SiO_x/NC-1(b).

Fig. S3. SEM image of $SiO_x/organosilica-3(a)$ and $SiO_x/NC-3(b)$.

Fig. S4. XRD patterns of SiO_x/NC-1, SiO_x/NC-2 and SiO_x/NC-3.

Fig. S5. Raman spectra of SiO_x/NC-1, SiO_x/NC-2 and SiO_x/NC-3.

Fig. S6. N_2 adsorption-desorption isotherms (a) and pore size distribution (b) of SiO_x/NC microspheres.

Fig. S7. TGA curves of SiO_x/NC microspheres.

Fig. S10. Charge-discharge curves of $SiO_x/NC-2$ at 0.1 A g⁻¹.

Fig. S11. SEM images of $SiO_x/NC-2$ electrode before (a) and after 100 cycles (b).

Table S1.	Volume	of solvents	consumed	for	preparing	different	Si oi	: SiO _x	anode	materials
prepared by	y Stöber	method								

Electrode material	Volume of Solvent (ml)	Volume of Si source (ml)	$V_{solvent}/V_{Si\ source}$	Ref#
Si/Ti ₃ C ₂ MXene composite	100	1	100	1
SiO_x/C microspheres	28	1	28	2
SiO _x /MWCNT/NC composite	83	1.8	46.1	3
SiO _x /C@RGO nanocomposite	192.7	1.84	104.7	4
Yolk@Shell SiOx/C microspheres	150	2.6	57.7	5
SiO _x /NC composite	120	7.44	16.1	6
ASD-SiOC nanocomposite	400	1	400	7
SiO _x /NC-2 microsphere	25	~ 2.5	~ 10	This work

Table S2. Discharge capacity (mAh g^{-1}) of SiO_x/NC and bare NC electrodes at different current densities (A g^{-1}).

Material	0.1	0.2	0.4	0.8	1.6	3.2	0.2
SiO _x /NC-1	685.0	603.0	524.1	461.7	394.4	322.6	593.7
SiO _x /NC-2	797.2	720.5	662.9	591.9	517.5	427.2	712.0
SiO _x /NC-3	799.6	705.4	617.5	512.1	419.1	329.0	712.2
NC	338.7	270.8	226.7	182.6	139.5	92.4	279.4

Reference

- 1. X. Hui, R. Zhao, P. Zhang, C. Li, C. Wang and L. Yin, Advanced Energy Materials, 2019, 9, 1901065.
- 2. Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L. Zhou and L. Mai, *Energy*

Storage Materials, 2018, **13**, 112-118.

- 3. Y. Ren, X. Wu and M. Li, Electrochimica Acta, 2016, 206, 328-336.
- 4. C. Guo, D. Wang, T. Liu, J. Zhu and X. Lang, Journal of Materials Chemistry A, 2014, 2, 3521-3527.
- 5. Z. Liu, Y. Zhao, R. He, W. Luo, J. Meng, Q. Yu, D. Zhao, L. Zhou and L. Mai, Energy Storage Materials, 2019, 19, 299-305.
- 6. C. H. Gao, H. L. Zhao, J. Wang, J. Wang, C. L. Yan and H. Q. Yin, *Journal of the Electrochemical Society*, 2019, **166**, A574-A581.
- 7. Z. Sang, Z. Zhao, D. Su, P. Miao, F. Zhang, H. Ji and X. Yan, *Journal of Materials Chemistry A*, 2018, **6**, 9064-9073.