Ultrafast and continuous-flow synthesis of AFX zeolite via interzeolite conversion of FAU zeolite

Tatsushi Yoshioka, Zhendong Liu, Kenta Iyoki, Anand Chokkalingam,
Yasuo Yonezawa, Yuusuke Hotta, Ryohji Ohnishi, Takeshi Matsuo, Yutaka Yanaba,
Koji Ohara, Takahiko Takewaki, Tsuneji Sano, Tatsuya Okubo, and Toru Wakahara

a Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
E-mail: liuzd@chemsys.t.u-tokyo.ac.jp, wakahara@chemsys.t.u-tokyo.ac.jp
b Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
c Mitsubishi Chemical Corporation, Science and Innovation Center, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
d Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
e Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5198, Japan
List of Figures

Fig. S1 Framework of the AFX structure. .. 2
Fig. S2 Image of the tubular reactor. ... 2
Fig. S3 SEM images of the crystalline products synthesized with the as-made and milled seeds. ... 3
Fig. S4 SEM images of the as-made and milled seeds, and powder XRD patterns of the as-made and milled seeds. ... 4
Fig. S5 Powder XRD patterns of the samples synthesized with bead-milled FAU zeolite for different synthesis periods. .. 5
Fig. S6 Total structure factors, $S(Q)$, of the samples synthesized with acid-leached seeds for different synthesis periods. .. 5
Fig. S7 Reduced pair distribution functions, $G(r)$, of the samples synthesized with the acid-leached seeds for different synthesis periods. 6
Fig. S8 29Si MAS NMR spectra of the non-protonated as-made and acid-leached seeds. ... 7
Fig. S9 SEM image of the final product with low magnification. 7
Fig. S10 Powder XRD patterns of the samples synthesized with short and low-temperature aging for different synthesis periods. 8
Supplementary Figures

Fig. S1: Framework of the AFX structure.

Fig. S2: Image of the tubular reactor.
Fig. S3: SEM images of the crystalline products synthesized with the (a) as-made and (b) milled seeds.
Fig. S4: SEM images of the (a) as-made and (b) milled seeds. (c) Powder XRD patterns of the as-made and milled seeds.
Fig. S5: Powder XRD patterns of the samples synthesized with bead-milled FAU zeolite for different synthesis periods.

Fig. S6: Total structure factors, $S(Q)$, of the samples synthesized with acid-leached seeds for different synthesis periods.
Fig. S7: Reduced pair distribution functions, $G(r)$, of the samples synthesized with the acid-leached seeds for different synthesis periods.
Fig. S8: 29Si MAS NMR spectra of the non-protonated as-made and acid-leached seeds.

Fig. S9: SEM image of the final product with low magnification.
Fig. S10: Powder XRD patterns of the samples synthesized with short and low-temperature aging for different synthesis periods.