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Figure S1. 1H NMR spectrum of Thiophene Monomer in CDCl3 at 25 °C, 500 MHz. 
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Figure S2. 1H NMR spectrum of Tellurophene Monomer in CDCl3 at 25 °C, 500 
MHz. 
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Figure S3. 1H NMR spectrum of PTh80-b-PTe60 in CDCl3 at 25 °C, 500 MHz. 
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Figure S4. GPC traces of block copolymer PTh80-b-PTe60. Mn overestimation by a 
factor of 1.2 is typical due to the rigidity of polymer semiconductors relative to 
polystyrene standards.1

PTh (1st Block) 
28 kDa
Đ = 1.2

PTh-PTe 
52 kDa
Đ = 1.3
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Figure S5. PTe Homopolymer Solid State Optical Absorption Spectrum
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Figure S6. UV-Vis-NIR of Oxidized PTh80-b-PTe60. UV-Vis-NIR of PTh80-b-PTe60 

with different concentrations of FeTs3. All samples prepared at 0.05 mg/mL in 95 % 
DCM, 5 % chloroform.
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Figure S7. STEM of Partially Aggregated PTh80-b-PTe60. Partially aggregated 
PTh80-b-PTe60 drop-cast onto a carbon film with Cu support grid. STEM utilized to 
improve the visualization of low contrast unimer film, which appear as amorphous, 
circular features.
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Figure S8. TEM of Oxidized PTh80-b-PTe60 
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Figure S9. Oxidized PTh80-b-PTe60
 Micelle Widths measured by AFM 
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Figure S10. PTh80-b-PTe60 15 min after FeTs3 addition in chloroform (green) and 
95 % DCM, 5 % chloroform (red). Solvated PTh80-b-PTe60 shown for reference 
(black). 
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Figure S11. Size Distribution of Oxidized Micelles Aged for 2 months
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Figure S12. STEM of Oxidized Micelles Aged for 2 months. Oxidized micelles drop 
cast onto carbon film with Cu support grid after aging for 2 months. Bright field 
(left) and dark field (right) modes of STEM were used to visualize the sample, 
showing only oxidized micelles unchanged with aging.

.  
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Figure S13. WAXS of Partially Aggregated (blue) and Oxidized PTh80-b-PTe60 (red) 
samples.
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Figure S14. UV-Vis-NIR Spectroscopy of Oxidized (red trace) and Reduced PTh80-
b-PTe60 (blue trace). 
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S1. Work Function Calculation for Oxidatively Doped PTe Films

Difference in work function (Δφ) is an average of three measurements at different locations over 

two films. Films were scratched to expose the ITO to measure the contact potential difference 

(CPD) across the film surface and the CPD of the ITO surface using Kelvin probe force microscopy 

(KPFM). Δφ is calculated using the equations below where e is elementary charge. 

Δ𝜑 =  𝜑𝑑𝑜𝑝𝑒𝑑 𝑓𝑖𝑙𝑚 ‒ 𝜑𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒 𝑓𝑖𝑙𝑚

where

 
𝐶𝑃𝐷𝑓𝑖𝑙𝑚 =  

𝜑𝑓𝑖𝑙𝑚 ‒ 𝜑𝑡𝑖𝑝

𝑒
 

It should be noted that the CPD of the film is the relative difference of the CPD between the film 

surface and the CPD of the ITO surface. This difference is largely unaffected between 

measurements. Measuring the film surface without an ITO reference typically results in large 

differences in the CPDs of the film when measuring the same sample multiple times or when using 

different KPFM tips. Referencing the CPD of the film to the CPD of ITO eliminates this variability. 
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Concentration

(mM)

Difference in Work 

Function

(meV)

Conductivity 

(S cm-1)

1 240 ± 50 8.7 ± 3.42

5 340 ± 50 6.0 ± 0.62

10 400 ± 40 1.4 ± 0.42

Table S1. Differences in work function and conductivities of PTh80-b-PTe60 thin 
films dip-doped with FeTs3
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